
CircleCI RSpec Suite Improvements: Q3 2024

Presented by Konstantin Gredeskoul, Staff Software Engineer, Infrastructure

CircleCI RSpec Suite Improvements: Q3 2024

What this is about

We use CircleCI to run an automated test suite, which ensures critical parts of the
system work with every change we push (if any test fails, then we know we have
something that needs fixing).

Problem:

◉ Running the test suite on a single dev box takes over 2 hours & 35 minutes

real 155m 4.954s

◉ So we parallelize into 40 containers to speed up the process to ~ 18 minutes
on average back in June 2024.

CircleCI RSpec Suite Improvements

 The Problem

◉ That’s 18 minutes of waiting to know whether your feature broke anything.

◉ Multiplied by the number of engineers, and by the number of times a day each
engineer pushes a change to a PR, and that’s a lot of wasted minutes.

CircleCI RSpec Suite Improvements

What makes test suite slow?

◉ A shear number of specs (tests) in the test suite

○ NOTE: Speeding up individual tests was outside the scope of the effort

◉ Installing and validating large number of dependencies

◉ Number of concurrent CircleCI builds running at a given time

◉ General busyness of the cloud hardware shared with other CircleCI customers

CircleCI RSpec Suite Improvements

Solutions: 1. KnasackPro

◉ In August, we integrated our test suite with a 3rd party service called
Knapsack Pro which remotely and more efficiently coordinates which
container runs which test, ensuring they all finish around the same time.

◉ Outcome: the average test suite time went down from 12-14 minutes on
average to about 7-8 mins (approx. a 50% improvement)

○ NOTE: all improvement % are approximate ball-park figures,

CircleCI RSpec Suite Improvements

Solutions (September)

◉ In September we completed several additional projects aimed at reducing the
time it takes to run our CircleCI test suite:

○ We switched from using Bundle and Yarn cache to our custom built Docker
Images that already have the dependencies pre-installed

○ For feature branches the “Datadog Intelligent Test Runner” reduces the time
by determining what tests it is safe NOT TO RUN, for a given change.

○ We simplified the step that sends a webhook to a 3rd party service Coverall
(reduction from 1-2 minutes to 3-5 seconds)

○ We switched to using Ruby with YJIT and Jemalloc, and upgraded CI to 3.3

Solutions: 2. Bundle & Yarn Cache

◉ It is now possible to use the academia-docker-images repository to build and push
the updated CircleCI Docker image with all of the dependencies pre-installed, using
the packages defined by lock files on the Academia App’s master branch at the time
of the Docker build.

◉ This works on OS-X (using aws-vault) and on Linux (can’t push from devbox)

◉ Upside: build is ~20% faster, now averaging ~8 minutes

◉ Downside: we must support a new project that rebuilds and re-pushes this image
daily or weekly (NOTE: currently in progress).

○ In the meantime image updates are manual and happen about once a week.

Docker Image with Dependencies

Solutions: 3. Datadog Intelligent Test Runner

◉ This is also a 3rd party product that automatically tracks interdepencies within
our code and tests, and is able to skip tests unaffected by the change.

◉ This is generally referred to as “test impact analysis”.

○ NOTE: We still run every test on master (i.e after the feature is merged)

◉ Outcome: test suite for feature branches now takes between 4 and 6 minutes
on average (master is around ~ 6-8)

○ This saves us $$ on CircleCI! Additional bonus!
○ NOTE: Rohit will talk more about this next!

Datadog Intelligent Test Runner

Miscellaneous Changes

Solutions (Misc)

◉ We are now ensuring that we use jemalloc (a better memory allocation library)

◉ We are ensuring that we use and enable YJIT (Ruby’s just-in-time compiler)

◉ We switched to using Ruby 3.3 on CI (production & dev are still on 3.2)

Summary

Outcome

◉ We were able to reduce the test suit runtime from 17-18 minutes to 4-6
minutes (branch), 6-8 minutes (master).

◉ That’s a 61% decrease (on master, and even more for branches)

◉ Who worked on it on the Infrastructure Team:

○ Rohit (implemented the Datadog ITR)
○ Patrick (sped up the Coverall webhook)
○ Konstantin (all other changes)

■ with kind assistance from Nick and Patrick (thanks!)

Next Steps

◉ Automate the Docker image with the dependencies built using Codebuild and
Terraform so Circle always has fresh dependencies pre-installed

◉ Observe the test suite for a bit after all of the changes and see if anything is off

◉ Potential future projects:

○ Bring Datadog ITR in-house (to save $$ on Datadog), may not be worth it
○ Reduce the individual spec time
○ Test pushing/pulling the docker image to/from CircleCI instead of AWS

■ Could save up to additional 1-2 minutes
○ Test out BuildKite on our own infrastructure

Thanks!

