JDEV TOOLING FOR YOU AND ME

Why BASH Is sometimes your friend...
How can our dev script save you time...
What other scripts exist you may not know about...

~ apademia.edu .. May 2095

http://academia.edu

AGENDA

> Why shell scripting at all?
» When is it appropriate?

» Why does it have such a bad rep?

> Self-help and self-explanatory usage
i > dev script for simplifying your workflow

> What are its design goals?

W . » What is it not?

R

_’::-:”,,_5—,—_:.'-,—"
%f——f
"//"/N&\'»I‘N*\ \ NN § 4 °
ETEE AN Y S0 ‘ —
"""" ALY 4 AR . L, e e O Y
LT T 1) NN RS s SR T
11725321 N - ‘*‘t\'i\,‘\-"‘iwf - .
il 11 PR \ ASCEEO A
‘““l ' SRTRRNEARAY \\\\\f, 7\\7\\:\},'\-\‘\
L _7 SRRSO S R

» acs-Ssh

> process-watch & process-list

WHEN IS SHELL SCRIPTING APPROPRIATE?

> Shell scripting is great when you need to need to automate a
repeatable sequence of UNIX commands

> |t's great when you want to install, run, verify, abort on error —
all around running external commands and processes.

> |t's not great when:

> you need to use associative arrays (only supported in BASH v5, MacOS

comes with v3 due to licensing issues, and switched ZSH as the default
shell)

> you feel like you need O0P — inheritance, polymorphism, internal state, etc

> you need to parse complex data structures for which other languages have
libraries you can use

> the script is NOT well structured, functions well named, errors are
unchecked, and nobody can understand it or fix any issues that may come

up.

WHYRTHEY

SEEING IS BELIEVING THAT IT'S WORKING

» Running shell scripts more often than not hides what's
actually running, and only "barf" when they error out.

> |f you know how to use "set”, it will show too much
output, or almost none at all.

» set -X

> Style guides are few and far between, and most folks don't
know how to write "good” shell code or how to lint it

WH YA HESBADIRE

ERROR HANDLING IS ... WAT?

> |f you use this setting, any error interrupts the entire script

» set -e

> Any good script must print help with -h or —help, but not
all do or do it well

> And if the script is not self explanatory (i.e. if you run it
with wrong options it doesn't tell you what you did wrong)
most folks will abandon it, myself included.

THE DEV SCRIPT

» [t's a Facade to the Development Environment most frequent
operations and actions

» |t's a way to automate things that can slow you down, such as:
» db migrations
» elasticsearch migrations

> one-time rake tasks that need to run
» bundle install & yarn install
» node / nvm upgrades + ruby.upgrades=

~—\'

> We have conflicting methods of starting things and running
tasks:

» There are RAKE tasks
> Being slowly replaced by the RAILS command
> There is YARN RUN
» There are RAKE tasks invoking YARN
» There are YARN tasks invoking RAKE & RAILS
» There are Ruby scripts (scripts/dblab)

» How can anyone remember all of that?

HOWHTISAVES

> dev's setup only runs migrations if db/migrate folder has
changed since the last time it ran

> same about elastic search migrations
» upcoming features:
> dev will read a configuration file config/dev-run-once.yml

» for each task defined there, it will run it and save task's
SHA in a locally ignored file

> next time it will skip this task, but will run any new ones
added to the YAML

> no more announcing: run “rake blah:blah:blah" once

1. ./dev seript
2../bin/process-list

3../bin/process-watch
4. ecs-ssh

Terminal

Foreman — Multi-process Ruby Launcher

File: Procfile

This is the Procfile used by the gem "foreman". The gem is not part
of the bundle, and must be installed separately:

s

gem install foreman -N

L

Alternatively, you can use the application boot script ./dev

which installs foreman if not already installd.

+

NOTE: we recommend that you start foreman via the ./dev script which also
ensures bundle install & yarn install + migrations are up to date.

NOTE: Most commands below load shell environment from .env-procfile file.
The file contains reasonable defaults for running the application.
To override any of the variables, please place the overrides into
the file .env-procfile.local file, which is git-ignored.

HHET HAFHHFHHEHETH

#

webpack (takes up to 4 minutes to build)

jse bash -c "source .env-procfile; yarn run js-hot"

web server, runs in a ©@-worker mode (no clustering), but with 1-4 threads.

puma: bash -c "source .env-procfile; bundle exec ${DATADOG_PROFILE_COMMAND} puma -C config/puma/development.rb --tag academia -v"
sidekig that uses a partial set of queues defined in config/sidekiq.yml

sidekiq: bash -c "source .env-procfile; SIDEKIQ=y bundle exec sidekiq -C config/sidekiq.yml"

tail the

log: bash -c "source .env-procfile; print-academia-env; tail -f log/development.log"

Terminal

academia-app: ./dev-h

EXAMPLES:
dev # start everything in one window, and run setup
dev sidekiq puma log # start Ruby backend and show dev log
dev js -s -i # start WebPack, skip setup, ignore existing processes
dev -w js -1 # start all but 1S, but run setup

dev show # Show application processes (if any)
dev show j # Show all JS processes (webpack/esbuild/etc)

dev stop # kill application processes & exit

dev stop # kill all Ruby processes (puma/sidekiqg/etc)
dev stop] # kill all JS processes (webpack/esbuild/etc)
dev stop -0 spring # kill Spring pre-loader and exit

The two-terminal setup:

Terminal 1: dev -w js # same as ./dev sidekiq puma log
Terminal 2: dev -i -s js # This should be started second, as it skips
the setup and ignores any running processes.

Terminal —+-

academia-app: ./bin/process-list -h

USAGE:
general usage pattern
bin/process-1ist [-][sort-column] [-- [ps args]|]

sorting in ascending order, and descending order
bin/process-1ist [sort-column]
bin/process-1ist -[sort-column]

print top 10 processes owned by ubuntu by CPU
bin/process-1ist pcpu -- -u ubuntu | tail -10

SEE ALSO:
bin/process-watch — like 'top', but uses process-1list
and accepts the same arguments.

SORT COLUMNS:
e NSz
e pCpu
e user
e start time

Terminal

academia-shell: bin/ecs-ssh

EXAMPLES:
Choose a production cluster and a service interactively
ecs-ssh p

Choose production cluster that matches 'web', and a service
that matches 'admin' interactively
ecs-ssh p -c web -s admin

ecs-ssh p -c '"*sidekiq' -s suppressed ring choose treatment
ecs-ssh q -c app-sidekiq -s free ring

List all the sidekiq queues for the given environment
ecs-ssh p queues
ecs-ssh q queues

ASCIl Cinema Recorded Demos for Academia

» Academia Shell: bin/ecs-ssh
https://asciinema.org/a/DtolxsX7p2xY3DukhM89F7t18

[/

~ AN

