
Konstantin Gredeskoul, CTO, Wanelo.com @kig

@kigster

@kig

THIS IS AN UPDATED AND REFRESHED VERSION V2.0 OF THE ORIGINAL TALK PRESENTED AT SF POSTGRESQL USER GROUP, AND TITLED
“12-STEP PROGRAM FOR POSTGRESQL-BASED WEB APPLICATIONS PERFORMANCE”

THE LOCATION OF THIS POPULAR SLIDESHARE IS AT THE FOLLOWING LINK.

FROM OBVIOUS TO INGENIOUS
INCREMENTALLY SCALING WEB APPLICATIONS ON POSTGRESQL

http://www.slideshare.net/kigster/12step-program-for-scaling-web-applications-on-postgresql

Page “From Obvious to Ingenious: Scaling Web Applications atop PostgreSQL”, by Konstantin Gredeskoul, CTO Wanelo.com. | Twitter: @kig | Github: @kigster

• Relational Databases:
PostgreSQL, MySQL, Oracle, SQL Server
have been around for decades. They are
flexible, performant, and widely supported.

Relational DBMSes represent massive 81%
of all data stores surveyed by db-
engines.com.

• Document Stores:
MongoDB, CouchDB, Amazon DynamoDB,
Couchbase

• Key Value Stores:
Redis, Memcached, Riak, DynamoDB

2

DATA STORE TYPES: OVERVIEW

• Wide Column Stores:
Cassandra, HBase, Accumulo, Hypertable

• Search Engines:
Solr, Elasticsearch, Splunk, Sphinx

• Graph DBMS:
Neo4j, Titan, OrientDB

• Time Series DBMS:
RRDtool, InfluxDB, Graphite.

• Also exist: RDF stores, Object-Oriented, XMLDB,
Content Stores, Navigational DBMS

Page “From Obvious to Ingenious: Scaling Web Applications atop PostgreSQL”, by Konstantin Gredeskoul, CTO Wanelo.com. | Twitter: @kig | Github: @kigster 3

DATA STORE TYPES: MARKET SHARE

Page “From Obvious to Ingenious: Scaling Web Applications atop PostgreSQL”, by Konstantin Gredeskoul, CTO Wanelo.com. | Twitter: @kig | Github: @kigster 4

DATA STORE TYPES: CHANGE OVER TIME

• Even though Graph DBMSes show the largest increase over time,
they account for mere 0.8% of the total market share.

Page “From Obvious to Ingenious: Scaling Web Applications atop PostgreSQL”, by Konstantin Gredeskoul, CTO Wanelo.com. | Twitter: @kig | Github: @kigster

• OLTP (Online Transaction Processing)
These are the typical web applications with massive number of users, performing various operations
concurrently.

Examples include online stores, social networks, google, etc. – are all OLTP applications. They require huge
throughput of small transactions, required to be as fast as possible (otherwise users leave), and achieve the speed
by having most of the “live” data cached.

• Analytics
Small number of users (analysts) running very long-running reports across the entire data sets, that are typically
much much larger than what would fit into RAM

• Backend Processing
Somewhere in between the two, backend applications are typically processing large amounts of data for either
import/export, transformations, synchronization and updates.

These apps have almost no users (just admins), and push their data store to the limit. But since it does not have real
users, speed of operations only affects application’s overall throughput.

5

WEB APPS OF DISTINCTLY DIFFERENT TYPES

“From Obvious to Ingenious: Scaling Web Applications atop PostgreSQL”, by Konstantin Gredeskoul, CTO Wanelo.com. | Twitter: @kig | Github: @kigster Page

• In this presentation we’ll make an assumption that we are building a massive
concurrent multi-user web application (using ruby, ruby on rails, and other tools).

• This type of load is typically called “OLTP”, meaning online transaction processing.

• In plain English, this means that our database will be getting high throughput of concurrent
requests on behalf of each session for each user working with an application at any given time.

• Sessions may be initiated from the web by users or admins, or from the mobile app by mobile
users.

• Users want their app to be very responsive, and they leave when it isn’t. Therefore OLTP
applications need to be both fast (performance) and support many users (scalable).

• We are NOT going to be addressing the needs of Analytics or Backend Processing
Applications, which have only a few or no users.

CASE IN POINT: APP ASSUMPTIONS

LOW HANGING
2. SCALING UP

IN THE
3. SCALING OUT

AND
1. SCALABILITY

What to choose for data store on
a new application?

Relational data model

Structured vs Unstructured

Scalability vs performance

Understanding latency

Foundations of web architecture

First signs of scaling issues:

Too many database reads

Too many database writes

1. Caching

2. Fixing slow SQL

Optimization example

3. Setting up streaming
replication, and doing read/
write splitting

4. Upgrading hardware

5. Where not to use
PostgreSQL

6. Do not store append-only
event data in PostgreSQL

7. Tune DB & filesystem

8. Buffer and serialize frequent
updates to the same row

9. Optimize schema for scale

10. Vertically shard busy tables

11. Move vertically shared tables
behind micro-services

12. Horizontally shard data-store
behind micro-service.

Conclusions and final thoughts.

Thanks & contact Info.

SCALABILITY IN CONTEXT
PERFORMANCE VS SCALABILITY, LATENCY, CASE STUDY,

WEB ARCHITECTURES

PART 1

Page “From Obvious to Ingenious: Scaling Web Applications atop PostgreSQL”, by Konstantin Gredeskoul, CTO Wanelo.com. | Twitter: @kig | Github: @kigster

• If your application starts with a small data-set,
then relational database will give you the
most flexibility, while enabling high
productivity software like Rails.

• PostgreSQL is not only a safe choice, but a
great choice for new applications due to it’s
unprecedented versatility, speed, and
reliability.

• Where it falls short, compared to some of the
more specialized storage software, is massive
horizontal scalability.

9

STARTING NEW APPLICATION, WHAT TO USE?

“From Obvious to Ingenious: Scaling Web Applications atop PostgreSQL”, by Konstantin Gredeskoul, CTO Wanelo.com. | Twitter: @kig | Github: @kigster Page

• Overwhelming majority of common web application data is
structured. As in, we know pretty well it’s properties (columns) in
advance – such as user.firstname, etc.

• Structured data is very effectively represented by the relational
model developed in 1969 by E.F. (Ted) Codd.

• Relational model is mathematically complete, and in practice
excellent for mapping almost any domain, with very few exceptions –
in the areas of time series, directional graphs, and full-text search.

STRUCTURED DATA
VS UNSTRUCTURED

“From Obvious to Ingenious: Scaling Web Applications atop PostgreSQL”, by Konstantin Gredeskoul, CTO Wanelo.com. | Twitter: @kig | Github: @kigster Page

• For the last few years there has been a lot of hype
surrounding “document” databases, in particular MongoDB.

• MongoDB marketing appears to be set to “kill” (or replace)
relational databases. Not only this will very unlikely to occur,
but it frames the discussion in a very wrong way: one OR the
other, while down the road it’s likely to be both.

• PostgreSQL has been continually growing in the area of
non-structured capabilities: it now supports JSON, HSTORE
and XML data types natively and very well.

STRUCTURED DATA
VS UNSTRUCTURED

“From Obvious to Ingenious: Scaling Web Applications atop PostgreSQL”, by Konstantin Gredeskoul, CTO Wanelo.com. | Twitter: @kig | Github: @kigster Page
Proprietary and
Confidential

SCALABILITY: IS THE CAPABILITY OF A SYSTEM,
NETWORK, OR PROCESS TO HANDLE A GROWING

AMOUNT OF WORK, OR ITS POTENTIAL TO BE
ENLARGED IN ORDER TO ACCOMMODATE THAT

GROWTH.

“From Obvious to Ingenious: Scaling Web Applications atop PostgreSQL”, by Konstantin Gredeskoul, CTO Wanelo.com. | Twitter: @kig | Github: @kigster Page
Proprietary and
Confidential

PERFORMANCE (LATENCY): GENERALLY DESCRIBES THE
TIME IT TAKES FOR VARIOUS OPERATIONS TO COMPLETE:
I.E. USER INTERFACES TO LOAD, OR BACKGROUND JOBS

TO COMPLETE. PERFORMANCE & SCALABILITY ARE
RELATED.

Proprietary and
Confidential

PERFORMANCE: REDUCING LATENCY
• If your app is high traffic (100K+ RPM) I recommend server latency of 100ms or lower for web applications

• For fast internal HTTP services, that wrap data-store – 5-10ms or lower

Graph credits: © NewRelic, Inc.

Proprietary and
Confidential

• Internal Microservices, Solr, memcached, redis, database are waiting on IO

• RubyVM, Middleware, GC are CPU burn, easy to scale by adding app servers

ZOOM INTO SERVER LATENCY

Graph credits: © NewRelic, Inc.

“From Obvious to Ingenious: Scaling Web Applications atop PostgreSQL”, by Konstantin Gredeskoul, CTO Wanelo.com. | Twitter: @kig | Github: @kigster Page
Proprietary and
Confidential

Founded in 2010, Wanelo (“wah-nee-
loh,” from Want, Need, Love) is a mall
on your phone. It helps you find,
bookmark (“save”) the quirkiest
products in the online universe.

A regular mall has 150 stores, but
Wanelo has 550,000 stores which

include all the big brands you know, as
well as tiny independent boutiques.

CASE STUDY

In 2013 traffic to Wanelo went from 2,000 requests
per minute, to 250,000 in about six months period
of a true exponential hyper-growth.

Proprietary and
Confidential

Page “From Obvious to Ingenious: Scaling Web Applications atop PostgreSQL”, by Konstantin Gredeskoul, CTO Wanelo.com. | Twitter: @kig | Github: @kigster

Propri
18

EARLY ENGINEERING GOALS

• Move as fast as possible with
product development. We call it
“Aggro-Agile”™

• Scale the app as needed, but
invest into small and cheap
things today, that will save us a
lot more time tomorrow

• Stay ahead of the growth curve
by closely monitoring application.

• Keep overall costs low (stay lean,
keep app fast)

• Spend $$ where it matters the
most: to save precious and
expensive developer time

• As a result, we took advantage of
a large number of open source
tools and paid services, which
allowed us to move fast.

TALKING ABOUT A “STACK”
IS POINTLESS

UNLESS YOU HAVE HOURS TO KILL

• MRI Ruby, Sinatra, Ruby on
Rails, Sidekiq

• PostgreSQL, RabbitMQ,
Solr, Redis, Twemproxy,
haproxy, pgbouncer,
memcached, nginx,
ElasticSearch, AWS S3

• Joyent Public Cloud (JPC),
Manta Object Store,
SmartOS (ZFS, ARC Cache,
SMF, Zones, dTrace)

• DNSMadeEasy,
Gandi.net, SendGrid,
SendWithUs, Fastly

• SiftScience, LeanPlum,
Crashalytics, MixPanel,
Graphite

• AWS RedShift

• Circonus, NewRelic,
statsd, PagerDuty

Page
“From Obvious to Ingenious: Scaling Web Applications atop PostgreSQL”, by Konstantin Gredeskoul, CTO Wanelo.com. | Twitter: @kig | Github: @kigster

Proprietary and
Confidential

20

OF MODERN WEB ARCHITECTURE
FOUNDATIONS

Page “From Obvious to Ingenious: Scaling Web Applications atop PostgreSQL”, by Konstantin Gredeskoul, CTO Wanelo.com. | Twitter: @kig | Github: @kigster

Proprietary and
Confidential

• app server (we use puma)
• scalable web server in front (we use nginx)
• database (we use postgresql)
• hosting environment (eg, AWS, Heroku, etc)
• deployment tools (capistrano)
• server configuration tools (we use chef)

• programming language + framework (RoR)

• many others, such as monitoring, alerting

FOUNDATIONAL TECHNOLOGIES

“From Obvious to Ingenious: Scaling Web Applications atop PostgreSQL”, by Konstantin Gredeskoul, CTO Wanelo.com. | Twitter: @kig | Github: @kigster Page

LET’S REVIEW – SUPER SIMPLE APP

/var/pgsql/data

incoming
http

PostgreSQL
Server

/home/user/app/current/public

nginx Unicorn / Passenger
Ruby VM

N x Unicorns
Ruby VM

• no redundancy, no caching (yet)
• can only process N concurrent requests
• nginx will serve static assets, deal with slow clients
• web sessions probably in the DB or cookie

“From Obvious to Ingenious: Scaling Web Applications atop PostgreSQL”, by Konstantin Gredeskoul, CTO Wanelo.com. | Twitter: @kig | Github: @kigster Page

AJAXIFY: DO THIS EARLY, HARD TO ADD LATER.

Proprietary and
Confidential

• Personalization via AJAX, so controller actions can
be cached entirely using caches_action

• Page returned unpersonalized, additional AJAX
request loads personalization

Page “From Obvious to Ingenious: Scaling Web Applications atop PostgreSQL”, by Konstantin Gredeskoul, CTO Wanelo.com. | Twitter: @kig | Github: @kigster

• Install 2+ memcached servers for caching and
use Dalli gem to connect to it for redundancy

• Switch to using memcached-based web
sessions. Use sessions sparingly, assume
transient nature

• Redis is also an option for sessions, but it’s not as easy
to use two redis instances for redundancy, as easily as
using memcached with Dalli

• Setup CDN for asset_host and any user
generated content. We use fastly.com

Proprietary and
Confidential

DON’T SHOOT YOURSELF IN THE FOOT! DO THIS.

/var/pgsql/data

incoming
http

PostgreSQL
Server

/home/user/app/current/public

nginx Unicorn / Passenger
Ruby VM

N x Unicorns
Ruby VM

browser PostgreSQL
Server

/home/user/app/current/public

nginx Unicorn / Passenger
Ruby VM

N x Unicorns
Ruby VM

memcachedCDN
cache images, JS

⬇

http://fastly.com

Page “From Obvious to Ingenious: Scaling Web Applications atop PostgreSQL”, by Konstantin Gredeskoul, CTO Wanelo.com. | Twitter: @kig | Github: @kigster

Proprietary and
Confidential

browser PostgreSQL
Server

/home/user/app/current/public

nginx Unicorn / Passenger
Ruby VM

N x Unicorns
Ruby VM

memcachedCDN
cache images, JS

ADD CACHING: CDN AND MEMCACHED

• geo distribute and cache your UGC and CSS/JS
• cache html and serialize objects in
• can increase TTL to alleviate load, if traffic

Page “From Obvious to Ingenious: Scaling Web Applications atop PostgreSQL”, by Konstantin Gredeskoul, CTO Wanelo.com. | Twitter: @kig | Github: @kigster

Proprietary and
Confidential

SIDENOTE: REMOVE SINGLE POINT OF
• Multiple load balancers require DNS

round robin and short TTL
(dnsmadeeasy.com)

• Multiple long-running tasks (such as
posting to Facebook or Twitter)
require background job processing
framework

• Multiple app servers require haproxy
between nginx and unicorn

http://dnsmadeeasy.com

Page “From Obvious to Ingenious: Scaling Web Applications atop PostgreSQL”, by Konstantin Gredeskoul, CTO Wanelo.com. | Twitter: @kig | Github: @kigster

Proprietary and
Confidential

PostgreSQL

Unicorn / Passenger
Ruby VM (times N)

haproxy

incoming http
DNS round robin

or failover / HA solution
nginx

memcached

redis

CDN
cache images, JS

Load Balancers

App Servers

single DB
Object Store

User Generated
Content

Sidekiq / Resque

Background WorkersData stores
Transient to
Permanent

• This architecture can horizontally
scale our as far the database at
it’s center

• Every other component can be scaled
by adding more of it, to handle more
traffic

“From Obvious to Ingenious: Scaling Web Applications atop PostgreSQL”, by Konstantin Gredeskoul, CTO Wanelo.com. | Twitter: @kig | Github: @kigster Page

TRAFFIC CLIMB IS RELENTLESS
And it keeps climbing, sending our servers into a tailspin…

Page “From Obvious to Ingenious: Scaling Web Applications atop PostgreSQL”, by Konstantin Gredeskoul, CTO Wanelo.com. | Twitter: @kig | Github: @kigster

Proprietary and
Confidential

• Pages load slowly or timeout

• Users are getting 503 Service
Unavailable

• Database is slammed (very high
CPU or read IO)

• Some pages load (cached?), some
don’t

29

FIRST SIGNS OF READ SCALABILITY PROBLEMS

Page “From Obvious to Ingenious: Scaling Web Applications atop PostgreSQL”, by Konstantin Gredeskoul, CTO Wanelo.com. | Twitter: @kig | Github: @kigster

Proprietary and
Confidential

• Database write IO is maxed out,
CPU is not

• Updates are waiting on each other,
piling up

• Application “locks up”, timeouts

• Replicas are not catching up*

30

FIRST SIGNS OF WRITE SCALABILITY PROBLEMS

“From Obvious to Ingenious: Scaling Web Applications atop PostgreSQL”, by Konstantin Gredeskoul, CTO Wanelo.com. | Twitter: @kig | Github: @kigster Page

BOTH SITUATIONS MAY EASILY RESULT IN DOWNTIME

OUR USERS NOTICED IN SECONDS…

Even though we achieved 99.99% uptime in
2013, in 2014 we had a couple short
downtimes caused by an overloaded (by too
many read requests) PostgreSQL replica.

Page
“From Obvious to Ingenious: Scaling Web Applications atop PostgreSQL”, by Konstantin Gredeskoul, CTO Wanelo.com. | Twitter: @kig | Github: @kigster

Proprietary and
Confidential

33

1. THE MOST IMPORTANT THINGS FIRST: CACHING
SCALING UP

Page “From Obvious to Ingenious: Scaling Web Applications atop PostgreSQL”, by Konstantin Gredeskoul, CTO Wanelo.com. | Twitter: @kig | Github: @kigster

Proprietary and
Confidential

• Anything that can be cached, should be

• Cache hit = many database hits
avoided

• Hit rate of 17% still saves DB hits

• We can cache many types of things…

• Cache is cheap and fast (memcached)

34

CACHING 101

Page “From Obvious to Ingenious: Scaling Web Applications atop PostgreSQL”, by Konstantin Gredeskoul, CTO Wanelo.com. | Twitter: @kig | Github: @kigster

CACHE MANY TYPES OF THINGS

• caches_action in controllers is very effective

• fragment caches of reusable widgets

• we use gem Compositor for JSON API.

• We cache serialized object fragments, grab them
from memcached using multi_get and merge them

• Our gem “CacheObject” provides very simple and
clever layer within Ruby on Rails framework.

git clone https://github.com/wanelo/compositor  
git clone https://github.com/wanelo/cache-object

https://github.com/wanelo/compositor
https://github.com/wanelo/cache-object

Page “From Obvious to Ingenious: Scaling Web Applications atop PostgreSQL”, by Konstantin Gredeskoul, CTO Wanelo.com. | Twitter: @kig | Github: @kigster

BUT EXPIRING CACHE IS NOT ALWAYS EASY
• Easiest way to expire cache is to wait for it

to expire (by setting a TTL ahead of time).
But that’s not always possible (ie.
sometimes an action requires wiping the
cache, and it’s not acceptable to wait)

• CacheSweepers in Rails help

• Can and should expiring caches in
background jobs as it might take time.

• Can cache pages, fragments and JSON
using CDN!

Page “From Obvious to Ingenious: Scaling Web Applications atop PostgreSQL”, by Konstantin Gredeskoul, CTO Wanelo.com. | Twitter: @kig | Github: @kigster

MOBILE API, CDN AND CACHING TRICK
• All API responses that point to other API

responses must always use fully qualified
URLs (ie. next_page, etc)

• Multi-page grids can start to be fetched
from: api.example.com

• Second and subsequent pages can be
served from api-cdn.example.com

• If CDN is down, small change to
configuration and mobile apps are sending
all traffic to the source (api.example.com)

http://api.example.com
http://api-cdn.example.com
http://api.example.com

Page
“From Obvious to Ingenious: Scaling Web Applications atop PostgreSQL”, by Konstantin Gredeskoul, CTO Wanelo.com. | Twitter: @kig | Github: @kigster

Proprietary and
Confidential

38

2. FINDING AND OPTIMIZING SLOW SQL
SCALING UP

Page “From Obvious to Ingenious: Scaling Web Applications atop PostgreSQL”, by Konstantin Gredeskoul, CTO Wanelo.com. | Twitter: @kig | Github: @kigster

SQL OPTIMIZATION: LOG SLOW QUERIES
• Find slow SQL (>100ms) and either remove it, cache the hell out of

it, or fix/rewrite the query

• Enable slow query log in postgresql.conf (as well as locks, and temp
files). These are of the types of things you need to know about.

Page “From Obvious to Ingenious: Scaling Web Applications atop PostgreSQL”, by Konstantin Gredeskoul, CTO Wanelo.com. | Twitter: @kig | Github: @kigster

TRACKING MOST TIME CONSUMING SQL
• The pg_stat_statements module provides a means for tracking execution statistics of all SQL

statements executed by a server.

• The module must be loaded by adding pg_stat_statements to shared_preload_libraries in
postgresql.conf, because it requires additional shared memory. This means that a server
restart is needed to add or remove the module.

Page “From Obvious to Ingenious: Scaling Web Applications atop PostgreSQL”, by Konstantin Gredeskoul, CTO Wanelo.com. | Twitter: @kig | Github: @kigster

FIXING SLOW QUERY:

Proprietary and
Confidential

• Run explain plan to understand how DB runs the query
using “explain analyze <query>”.

• Are there adequate indexes for the query? Is the
database using appropriate index? Has the table been
recently analyzed?

• Can a complex join be simplified into a subselect?

• Can this query use an index-only scan?

• Can a column being sorted on be added to the index?

• What can we learn from watching the data in the two
tables pg_stat_user_tables and pg_stat_user_indexes?
• We could discover that the application is doing many sequential

scans, has several unused indexes, that take up space and slow
down “inserts” and much more.

pg_stat_user_tables

Page “From Obvious to Ingenious: Scaling Web Applications atop PostgreSQL”, by Konstantin Gredeskoul, CTO Wanelo.com. | Twitter: @kig | Github: @kigster

SQL OPTIMIZATION, CTD

Proprietary and
Confidential

Instrumentation software such as NewRelic shows slow queries, with explain plans, and time consuming transactions

Page
“From Obvious to Ingenious: Scaling Web Applications atop PostgreSQL”, by Konstantin Gredeskoul, CTO Wanelo.com. | Twitter: @kig | Github: @kigster

Proprietary and
Confidential

43

2. FINDING AND OPTIMIZING SLOW SQL
SCALING UPFIXING A QUERY: AN EXAMPLE

“From Obvious to Ingenious: Scaling Web Applications atop PostgreSQL”, by Konstantin Gredeskoul, CTO Wanelo.com. | Twitter: @kig | Github: @kigster Page
Proprietary and
Confidential

ONE DAY, I NOTICED LOTS OF TEMP FILES created in the postgres.log

“From Obvious to Ingenious: Scaling Web Applications atop PostgreSQL”, by Konstantin Gredeskoul, CTO Wanelo.com. | Twitter: @kig | Github: @kigster Page
Proprietary and
Confidential

LET’S RUN THIS QUERY…

This join takes a whole second to return :(

“From Obvious to Ingenious: Scaling Web Applications atop PostgreSQL”, by Konstantin Gredeskoul, CTO Wanelo.com. | Twitter: @kig | Github: @kigster Page
Proprietary and
Confidential

FOLLOWS TABLE… STORIES TABLE…

So our index is partial, only on state = ‘active’

Regardless of whether this was intentional, the join results is a full table scan (called “sequential scan”).

But the state column isn’t used in the query at all! Perhaps it’s a bug?

Sequential scan on a large table, in a database used by an OLTP application, is bad, because it “steals” the
database cache from many other queries, because OS will now load these pages into the memory.

“From Obvious to Ingenious: Scaling Web Applications atop PostgreSQL”, by Konstantin Gredeskoul, CTO Wanelo.com. | Twitter: @kig | Github: @kigster Page
Proprietary and
Confidential

Now query takes 3ms instead of 1000ms, and
the IO on the server drops significantly

according to this NewRelic graph:

It was meant to be there anyway :)

FIXING IT: LETS ADD STATE = “ACTIVE”

Page
“From Obvious to Ingenious: Scaling Web Applications atop PostgreSQL”, by Konstantin Gredeskoul, CTO Wanelo.com. | Twitter: @kig | Github: @kigster

Proprietary and
Confidential

48

3. SETTING UP STREAMING REPLICATION
SCALING UP

Page “From Obvious to Ingenious: Scaling Web Applications atop PostgreSQL”, by Konstantin Gredeskoul, CTO Wanelo.com. | Twitter: @kig | Github: @kigster

SCALE READS BY REPLICATION

Proprietary and
Confidential

• Version 9.3 and later setting up
replication is very easy

• postgresql.conf (left)
both the master & the replica

• So is electing a new master, and
switching replicas to a new
timeline.

• Each PG release seems to be
making replication even easier.

These settings have been tuned for SmartOS and
our application requirements (thanks PGExperts!)

Page “From Obvious to Ingenious: Scaling Web Applications atop PostgreSQL”, by Konstantin Gredeskoul, CTO Wanelo.com. | Twitter: @kig | Github: @kigster

Proprietary and
Confidential

• Once you have at least one streaming replica live,
you must know at all times, if the replica is falling
behind the master.

REPLICATION 101: WHERE ARE MY REPLICAS?
https://github.com/wanelo/nagios-checks

Our nagios checks automatically show the
difference in MB as well as the time lag:

Grab our nagios replication check here:

https://github.com/wanelo/nagios-checks

Page “From Obvious to Ingenious: Scaling Web Applications atop PostgreSQL”, by Konstantin Gredeskoul, CTO Wanelo.com. | Twitter: @kig | Github: @kigster

Proprietary and
Confidential

• One question with the replicas: can they catch
up with all the writes coming from the
master?

• What if the master on SSDs, and replicas
aren’t? We tried this setup to save $$.

• And we instantly bumped into this problem:
applying WAL logs to the replicas created very
significant disk write load on non-SSD drives

• These replicas were barely able to apply writes
from the master without live traffic.

• With traffic, they would start falling behind,
the delta ever increasing.

REPLICATION 102: USE SSDS EVERYWHERE

The red line is the site’s error rate.
Note the correlation.

Page “From Obvious to Ingenious: Scaling Web Applications atop PostgreSQL”, by Konstantin Gredeskoul, CTO Wanelo.com. | Twitter: @kig | Github: @kigster

HOW TO DISTRIBUTE READS TO REPLICAS?

Proprietary and
Confidential

This is a diagram of data flow between the application and the database with it’s
replicas, using pgBouncer to provide connection pooling from each app server.

Replica 1

Master DB

Replica 2

streaming
replication

streaming
replication

writes and some
reads

reads

reads

Application pgBouncer

reads

reads
+

writes

reads

Application Server

Page “From Obvious to Ingenious: Scaling Web Applications atop PostgreSQL”, by Konstantin Gredeskoul, CTO Wanelo.com. | Twitter: @kig | Github: @kigster

BUT HOW DO WE ROUTE READS TO REPLICAS?

Proprietary and
Confidential

Replica 1

Master DB

Replica 2

streaming
replication

streaming
replication

writes and some
reads

reads

reads

Application pgBouncer

reads

reads
+

writes

reads

Application Server

• We were hoping there was a generic solution,
homelike like a pgBouncer, that would automatically
route SELECT queries to the replicas, while all “write”
requests to the master.

• Turns out that it is nearly impossible to provide a
generic tool that does this well. For instance, how
do you deal with a SELECT inside a transaction?

• As a result, most production-ready read/write splitting
solutions are built into the application itself.

• We started looking for a Ruby solution, and were
quickly unimpressed by everything we could find. One
of the biggest issues was thread-safety. Only one of
the libraries we found appeared to be thread safe.

https://github.com/taskrabbit/makara

“From Obvious to Ingenious: Scaling Web Applications atop PostgreSQL”, by Konstantin Gredeskoul, CTO Wanelo.com. | Twitter: @kig | Github: @kigster Page

Makara is a ruby gem from TaskRabbit that was in production there, but
only supported MySQL. We ported the database code from MySQL to
PostgreSQL.

• Was the simplest library to
understand, and port to PG

• Worked in multi-threaded environment of
Sidekiq Background Framework

• Makara automatically retries if replica
goes down

• Load balances with weights

• Was already running in production

READ SPLITTING WITH MAKARA

Page “From Obvious to Ingenious: Scaling Web Applications atop PostgreSQL”, by Konstantin Gredeskoul, CTO Wanelo.com. | Twitter: @kig | Github: @kigster

CONSIDERATIONS WHEN USING REPLICATION

Proprietary and
Confidential

• Application must be tuned to support eventual
consistency. Data may not yet be on replica!

• Must explicitly force fetch from the master DB
when it’s critical (i.e. after a user account’s creation)

• We often use below pattern of first trying the fetch,
if nothing found retry on master db

Page “From Obvious to Ingenious: Scaling Web Applications atop PostgreSQL”, by Konstantin Gredeskoul, CTO Wanelo.com. | Twitter: @kig | Github: @kigster

USEFUL TIP: REPLICAS CAN SPECIALIZE

Proprietary and
Confidential

Background Workers can use dedicated replica not shared with
the app servers, to optimize hit rate for file system cache (ARC) on
both replicas

PostgreSQL
Master

Unicorn / Passenger
Ruby VM (times N)

App Servers Sidekiq / Resque

Background Workers

PostgreSQL
Replica 1

PostgreSQL
Replica 2

PostgreSQL
Replica 3

ARC cache warm with
queries from web traffic

ARC cache warm with
background job queries

Page “From Obvious to Ingenious: Scaling Web Applications atop PostgreSQL”, by Konstantin Gredeskoul, CTO Wanelo.com. | Twitter: @kig | Github: @kigster

BIG HEAVY READS GO THERE

Proprietary and
Confidential

• Long heavy queries should run by the
background jobs against a dedicated
replica, to isolate their effect on web traffic

PostgreSQL
Master

Sidekiq / Resque

Background Workers

PostgreSQL
Replica 1

PostgreSQL
Replica 2

PostgreSQL
Replica 3

• Each type of load will produce a unique set of
data cached by the file system

Page
“From Obvious to Ingenious: Scaling Web Applications atop PostgreSQL”, by Konstantin Gredeskoul, CTO Wanelo.com. | Twitter: @kig | Github: @kigster

Proprietary and
Confidential

58

4. UPGRADING (VIRTUAL) HARDWARE
SCALING UP

Page “From Obvious to Ingenious: Scaling Web Applications atop PostgreSQL”, by Konstantin Gredeskoul, CTO Wanelo.com. | Twitter: @kig | Github: @kigster

HARDWARE: IO & RAM

Proprietary and
Confidential

• Sounds obvious, but better or
faster hardware is an obvious
choice when scaling out

• Large RAM will be used as
file system cache

• On Joyent’s SmartOS ARC FS
cache is very effective

• shared_buffers should be
set to 25% of RAM or 12GB,
whichever is smaller.

• Using fast SSD disk array
made an enormous
difference

• Joyent’s native 16-disk RAID managed
by ZFS instead of controller provides
excellent performance

Page
“From Obvious to Ingenious: Scaling Web Applications atop PostgreSQL”, by Konstantin Gredeskoul, CTO Wanelo.com. | Twitter: @kig | Github: @kigster

Proprietary and
Confidential

60

5. NO TOOL EXCELS AT EVERYTHING
SCALING UP

AND POSTGRESQL IS NO EXCEPTION.

Page “From Obvious to Ingenious: Scaling Web Applications atop PostgreSQL”, by Konstantin Gredeskoul, CTO Wanelo.com. | Twitter: @kig | Github: @kigster

WHEN POSTGRESQL IS NOT ENOUGH

Proprietary and
Confidential

Not every type of data is well suited for storing and quickly fetching from a relational DB, even though initially it may
be convenient. For example, our initial implementation of the “text search” in PG became too slow when the # of
documents reached 1M.

• Solr is great for full text search, and deep
paginated sorted lists, such as popular, or related
products

• ElasticSearch is a superset of Solr, but scales wide
near infinitum. We ran 0.5Tb ElasticSearch cluster.

• Redis is a great data store for transient or semi-
persistent data with list, hash or set semantics

• RabbitMQ is a fantastic high performance queue,
with both point-to-point and pub-sub
communications.

Page “From Obvious to Ingenious: Scaling Web Applications atop PostgreSQL”, by Konstantin Gredeskoul, CTO Wanelo.com. | Twitter: @kig | Github: @kigster

SOME CAVEATS OF EACH STORE WE TRIED

Proprietary and
Confidential

• Solr is easy to replicate to 10-20
replicas, but they take toll on
the master.
• Do not serve reads from the master.
• For high document update rate, set # of

documents to commit to a stratospheric
value.

• ElasticSearch is difficult to
manage and configure for high
availability. Professional services
cost a lot, pricing not startup
friendly.

• Redis is not a transactional, or
a txn-reliable data store
despite what anyone says.
Expect all data to go away at
some point, and always have a
way to rebuild it from the DB if
it’s critical.

• RabbitMQ is great, but
remember that queues and
messages are not “durable”, ie.
on disk by default.

Page “From Obvious to Ingenious: Scaling Web Applications atop PostgreSQL”, by Konstantin Gredeskoul, CTO Wanelo.com. | Twitter: @kig | Github: @kigster

REDIS SIDETRACK: LESSONS LEARNED

Proprietary and
Confidential

This in-memory store is very good for certain applications where PostgreSQL isn’t.

• We use Redis for ActivityFeed by
precomputing each user’s feed at
write time. But we can regenerate
it if the data is lost from Redis

• We use twemproxy in front of
Redis which provides automatic
horizontal sharding and
connection pooling.

• We run clusters of 256 redis
shards across many virtual zones;
sharded redis instances use many
cores, instead of just one (as a
single instance would)

• Small redis shards can easily fork to
backup the data, as the data is
small.

• We squeezed more performance of
Redis by packaging multiple

I like to think of Redis as a in-memory cache with additional hash, set and list semantics. And they totally rock!
When Redis backs up data, or tries to replicate (ugh, that was rough), it forks. Memory reqs double!

Page
“From Obvious to Ingenious: Scaling Web Applications atop PostgreSQL”, by Konstantin Gredeskoul, CTO Wanelo.com. | Twitter: @kig | Github: @kigster

Proprietary and
Confidential

64

6. MOVE EVENT-LIKE TABLES OUT OF POSTGRESQL
SCALING UP

Page “From Obvious to Ingenious: Scaling Web Applications atop PostgreSQL”, by Konstantin Gredeskoul, CTO Wanelo.com. | Twitter: @kig | Github: @kigster

EVENT LOGS, & APPEND-ONLY TABLES

Proprietary and
Confidential

• Many analysts and business stakeholders like
to collect an ever-growing list of metrics, i.e.

• User/business events such as “registered”, “ordered”

• System events, such as “database went offline”

• Click-stream events, that follow nginx access_log file

• State changes history on key models, like an Order

• These append-only tables often start in the
database, but quickly prove to be a nuisance

• They generate very high write IO, often
overwhelming the underlying hardware

“From Obvious to Ingenious: Scaling Web Applications atop PostgreSQL”, by Konstantin Gredeskoul, CTO Wanelo.com. | Twitter: @kig | Github: @kigster Page

MOVE EVENT TABLES OUT OF DATABASE

Proprietary and
Confidential

• We were appending all user events into a single table
user_events

• The application was generating millions of rows per
day!

• After realizing that there was no reason this data needed
to stay in PostgreSQL we moved it out using a clever
solution, that combined:

• Event dispatch system using ruby gem Ventable

• Event recording using rsyslog

• Data analysis using a combination of AWS Redshift, and Joyent’s Manta.

• Manta is an object store with native compute facility, that supports
concurrent analysis of thousands of objects in parallel. It provides map/
reduce facility, and bash tools like awk and grep for filtering and mapping.

• We eventually migrated most of the analytics to RedShift, in order to
return to regular SQL for analytics.

“From Obvious to Ingenious: Scaling Web Applications atop PostgreSQL”, by Konstantin Gredeskoul, CTO Wanelo.com. | Twitter: @kig | Github: @kigster Page

DETAILED BLOG POST ABOUT THIS MIGRATION

Proprietary and
Confidential

 http://wanelo.ly/event-collection

http://wanelo.ly/event-collection

DOING THE HARD STUFF, BUT INCREMENTALLY AND METHODICALLY

Page
“From Obvious to Ingenious: Scaling Web Applications atop PostgreSQL”, by Konstantin Gredeskoul, CTO Wanelo.com. | Twitter: @kig | Github: @kigster

Proprietary and
Confidential

69

7. TUNE POSTGRESQL & FILESYSTEM
SCALING OUT: TUNING

Page “From Obvious to Ingenious: Scaling Web Applications atop PostgreSQL”, by Konstantin Gredeskoul, CTO Wanelo.com. | Twitter: @kig | Github: @kigster

Proprietary and
Confidential

• Problem: zones (virtual hosts) with “write problems”
appeared to be writing 16 times more data to disk,
compared to what virtual file system reports

• vfsstat says 8Mb/sec write volume

So what’s going on?

• iostat says 128Mb/sec is actually written to disk

THIS HAPPENED TO US

Page “From Obvious to Ingenious: Scaling Web Applications atop PostgreSQL”, by Konstantin Gredeskoul, CTO Wanelo.com. | Twitter: @kig | Github: @kigster

Proprietary and
Confidential

• Turns out default ZFS block size is
128Kb, and PostgreSQL page size
is 8Kb.

• Every small write that touched a
page, had to write 128Kb of a ZFS
block to the disk

• This may be good for huge
sequential writes, but not for
random access, lots of tiny writes

TUNING FILESYSTEM

Page “From Obvious to Ingenious: Scaling Web Applications atop PostgreSQL”, by Konstantin Gredeskoul, CTO Wanelo.com. | Twitter: @kig | Github: @kigster

Proprietary and
Confidential

• Solution: Joyent changed ZFS block
size for our zone, iostat write volume
dropped to 8Mb/sec

• We also added commit_delay

TUNING ZFS & PGSQL

Page “From Obvious to Ingenious: Scaling Web Applications atop PostgreSQL”, by Konstantin Gredeskoul, CTO Wanelo.com. | Twitter: @kig | Github: @kigster

Proprietary and
Confidential

• Many of these settings are the default in our open-source Chef
cookbook for installing PostgreSQL from sources

THIS KNOWLEDGE SHOULD BE PART OF

https://github.com/wanelo-chef/postgres

• It installs PG in eg /opt/local/postgresql-9.5.0

• It configures it’s data in /var/pgsql/data95

• It allows seamless and safe upgrades of minor or major versions of
PostgreSQL, never overwriting binaries

https://github.com/wanelo-chef/postgres

Page “From Obvious to Ingenious: Scaling Web Applications atop PostgreSQL”, by Konstantin Gredeskoul, CTO Wanelo.com. | Twitter: @kig | Github: @kigster

ONLINE RESOURCES ON PG TUNING

Proprietary and
Confidential

• Josh Berkus’s “5 steps to PostgreSQL
Performance” on SlideShare is fantastic

http://www.slideshare.net/PGExperts/five-steps-perform2013

• PostgreSQL wiki pages on performance
tuning are excellent

http://wiki.postgresql.org/wiki/Tuning_Your_PostgreSQL_Server  
http://wiki.postgresql.org/wiki/Performance_Optimization

http://www.slideshare.net/PGExperts/five-steps-perform2013
http://wiki.postgresql.org/wiki/Tuning_Your_PostgreSQL_Server
http://wiki.postgresql.org/wiki/Performance_Optimization

Page
“From Obvious to Ingenious: Scaling Web Applications atop PostgreSQL”, by Konstantin Gredeskoul, CTO Wanelo.com. | Twitter: @kig | Github: @kigster

Proprietary and
Confidential

75

8. BUFFERING, SERIALIZING UPDATES OF COUNTERS
SCALING OUT: PATTERNS

Page “From Obvious to Ingenious: Scaling Web Applications atop PostgreSQL”, by Konstantin Gredeskoul, CTO Wanelo.com. | Twitter: @kig | Github: @kigster

Proprietary and
Confidential

•Problem: products.saves_count is
incremented every time someone saves
a product (by 1)

•At 100s of inserts/sec, that’s a lot of
updates

REDUCE WRITE IO AND LOCK CONTENTION

•Worse: 100s of concurrent requests
trying to obtain a row level lock on the
same popular product

Page “From Obvious to Ingenious: Scaling Web Applications atop PostgreSQL”, by Konstantin Gredeskoul, CTO Wanelo.com. | Twitter: @kig | Github: @kigster

BUFFERING AND SERIALIZING

\

• Sidekiq background job framework has two inter-related
features:

• scheduling in the future (say 10 minutes ahead)

• UniqueJob extension

• We increment a counter in redis, and enqueue a job that says
“update product in 10 minutes”

• Once every 10 minutes popular products are updated by
adding a value stored in Redis to the database value, and
resetting Redis value to 0

BUFFERING IN PICTURES

Proprietary and
Confidential

Save Product

Save Product

Save Product

1. enqueue update
request for product

with a delay

PostgreSQL
Update Request already

on the queue

3. Process Job

Redis Cache

2. increment
counter

4. Read & Reset to 0

5. Update Product

Page “From Obvious to Ingenious: Scaling Web Applications atop PostgreSQL”, by Konstantin Gredeskoul, CTO Wanelo.com. | Twitter: @kig | Github: @kigster

BUFFERING CONCLUSIONS

Proprietary and
Confidential

• If not, to achieve read consistency, we
can display the count as database value
plus the redis-cached value at read time

• If we show objects from the database,
they might be sometimes behind on the
counter. It might be okay if the
alternative is to be down.

Page
“From Obvious to Ingenious: Scaling Web Applications atop PostgreSQL”, by Konstantin Gredeskoul, CTO Wanelo.com. | Twitter: @kig | Github: @kigster

Proprietary and
Confidential

80

9. OPTIMIZING SCHEMA FOR SCALE
SCALING OUT: PATTERNS

Page “From Obvious to Ingenious: Scaling Web Applications atop PostgreSQL”, by Konstantin Gredeskoul, CTO Wanelo.com. | Twitter: @kig | Github: @kigster

MVCC DOES COPY ON WRITE
Problem: heavy writes on the master db, due to the fact that PostgreSQL
rewrites each row for most updates.

Some exceptions exist: i.e. non-indexed integer column, a counter,
timestamp or other simple non-indexed type

• But we often index these so we can
sort by them

• So rewriting user means rewriting the
entire row

• Solution: move frequently updated
columns away

Page “From Obvious to Ingenious: Scaling Web Applications atop PostgreSQL”, by Konstantin Gredeskoul, CTO Wanelo.com. | Twitter: @kig | Github: @kigster

TOO MANY WRITES: THIS IS HOW IT BEGINS
• We notice how much writes we are

doing on the database machine,
and become curious.

• Something must not be right. What
is it?

• Quick check with
pg_stat_user_tables reveals that
our users table is doing a huge
number of updates, many of them
are not “hot” updates

• Subsequent research reveals the
following line is at fault: we
update the entire user row for each

Page “From Obvious to Ingenious: Scaling Web Applications atop PostgreSQL”, by Konstantin Gredeskoul, CTO Wanelo.com. | Twitter: @kig | Github: @kigster

SCHEMA TRICKS

Proprietary and
Confidential

• Split wide tables that get a lot of
updates into two more more 1-1
tables, to reduce the impact of an
update

• Much less vacuuming required
when smaller tables are frequently
updated, especially if this allows
the updates to remain “hot”.

Page “From Obvious to Ingenious: Scaling Web Applications atop PostgreSQL”, by Konstantin Gredeskoul, CTO Wanelo.com. | Twitter: @kig | Github: @kigster

Proprietary and
Confidential

 id
 email
 encrypted_password
 reset_password_token
 reset_password_sent_at
 remember_created_at
 sign_in_count
 current_sign_in_at
 last_sign_in_at
 current_sign_in_ip
 last_sign_in_ip
 confirmation_token
 confirmed_at
 confirmation_sent_at
 unconfirmed_email
 failed_attempts
 unlock_token
 locked_at
 authentication_token
 created_at
 updated_at
 username
 avatar
 state
 followers_count
 saves_count
 collections_count
 stores_count
 following_count
 stories_count

Users
 id
 email
 created_at
 username
 avatar
 state

Users

 user_id
 encrypted_password
 reset_password_token
 reset_password_sent_at
 remember_created_at
 sign_in_count
 current_sign_in_at
 last_sign_in_at
 current_sign_in_ip
 last_sign_in_ip
 confirmation_token
 confirmed_at
 confirmation_sent_at
 unconfirmed_email
 failed_attempts
 unlock_token
 locked_at
 authentication_token
 updated_at

UserLogins
 user_id
 followers_count
 saves_count
 collections_count
 stores_count
 following_count
 stories_count

UserCounts

refactor

VERTICAL TABLE SPLIT

Page
“From Obvious to Ingenious: Scaling Web Applications atop PostgreSQL”, by Konstantin Gredeskoul, CTO Wanelo.com. | Twitter: @kig | Github: @kigster

Proprietary and
Confidential

85

10. VERTICAL SHARDING
SCALING OUT: PATTERNS

Page “From Obvious to Ingenious: Scaling Web Applications atop PostgreSQL”, by Konstantin Gredeskoul, CTO Wanelo.com. | Twitter: @kig | Github: @kigster

VERTICAL SHARDING – WHAT IS IT?

Proprietary and
Confidential

• Heavy tables with too many writes, can
be moved into their own separate
database

• For us it was saves: now @ 3B+ rows
• At hundreds of inserts per second, and 4 indexes, we

were feeling the pain.

• “Save” is like a “Like” on Instagram, or “Pin” on Pinterest.

• It turns out moving a single table (in
Rails) out is a not a huge effort: it took
our team 3 days

Page “From Obvious to Ingenious: Scaling Web Applications atop PostgreSQL”, by Konstantin Gredeskoul, CTO Wanelo.com. | Twitter: @kig | Github: @kigster

VERTICAL SHARDING – HOW?

Proprietary and
Confidential

• Update code to point to both old and new
databases (new – only for the shared model)

• Implement any dynamic Rails association
methods as real methods

• ie. save.products becomes a method on Save
model, lookup up Products by IDs

• Update development and test setup with
two primary databases and fix all the tests

http://wanelo.ly/vertical-sharding

http://wanelo.ly/vertical-sharding

“From Obvious to Ingenious: Scaling Web Applications atop PostgreSQL”, by Konstantin Gredeskoul, CTO Wanelo.com. | Twitter: @kig | Github: @kigster Page
Proprietary and
Confidential

Web App

PostgreSQL
Master (Main Schema)

PostgreSQL
Replica (Main Schema)

Vertically Sharded Database

PostgreSQL
Master (Split Table)

APPLICATION TALKING TO
TWO DATABASES

Page “From Obvious to Ingenious: Scaling Web Applications atop PostgreSQL”, by Konstantin Gredeskoul, CTO Wanelo.com. | Twitter: @kig | Github: @kigster

VERTICAL SHARDING – DEPLOYING

Proprietary and
Confidential

• Drop in write IO on the main DB after
splitting off the high IO table into a
dedicated compute node

Web App

PostgreSQL
Master (Main Schema)

PostgreSQL
Replica (Main Schema)

Vertically Sharded Database

PostgreSQL
Master (Split Table)

Page
“From Obvious to Ingenious: Scaling Web Applications atop PostgreSQL”, by Konstantin Gredeskoul, CTO Wanelo.com. | Twitter: @kig | Github: @kigster

Proprietary and
Confidential

90

11. WRAPPING VERTICALLY SHARDED DATA WITH
MICRO SERVICES

SCALING OUT: PATTERNS

Page “From Obvious to Ingenious: Scaling Web Applications atop PostgreSQL”, by Konstantin Gredeskoul, CTO Wanelo.com. | Twitter: @kig | Github: @kigster

SPLITTING OFF MICRO-SERVICES

Proprietary and
Confidential

• Vertical Sharding is a great precursor to a
micro-services architecture

• We already have Saves in another
database, let’s migrate it to a light-weight
HTTP service

• New service: Sinatra, client and server libs,
updated tests & development, CI, deployment
without changing db schema

• 2-3 weeks a pair of engineers level of effort

Page “From Obvious to Ingenious: Scaling Web Applications atop PostgreSQL”, by Konstantin Gredeskoul, CTO Wanelo.com. | Twitter: @kig | Github: @kigster

ADAPTER DESIGN PATTERN TO THE RESCUE

Proprietary and
Confidential

Main App
Unicorn w/ Rails

PostgreSQL HTTP
Client Adapter

Service App
Unicorn w/Sinatra

Native
Client Adaptor

We used Adapter pattern to write two client adapters: native and
HTTP, so we can use the lib, but not yet switch to HTTP

Page “From Obvious to Ingenious: Scaling Web Applications atop PostgreSQL”, by Konstantin Gredeskoul, CTO Wanelo.com. | Twitter: @kig | Github: @kigster

SERVICES CONCLUSIONS

Proprietary and
Confidential

• Now we can independently scale service
backend, in particular reads by using
replicas

• This prepares us for the next inevitable step:
horizontal sharding

• At a cost of added request latency, lots of
extra code, extra runtime infrastructure, and
2 weeks of work

• Do this only if you absolutely have to: it adds
complexity, more moving parts, etc. This is
not to be taken lightly!

Page
“From Obvious to Ingenious: Scaling Web Applications atop PostgreSQL”, by Konstantin Gredeskoul, CTO Wanelo.com. | Twitter: @kig | Github: @kigster

Proprietary and
Confidential

94

12. SHARDING THE BACKEND BEHIND MICRO
SERVICES HORIZONTALLY

SCALING OUT: PATTERNS

Page “From Obvious to Ingenious: Scaling Web Applications atop PostgreSQL”, by Konstantin Gredeskoul, CTO Wanelo.com. | Twitter: @kig | Github: @kigster

HORIZONTAL SHARDING CONCEPTS

Proprietary and
Confidential

• We wanted to stick with PostgreSQL for critical
data such as saves, and avoid learning a new tool.

• Really liked Instagram’s approach with schemas

• Built our own schema-based sharding in ruby,
on top of Sequel gem, and open sourced it

• It supports mapping of physical to logical
shards, and connection pooling

Page “From Obvious to Ingenious: Scaling Web Applications atop PostgreSQL”, by Konstantin Gredeskoul, CTO Wanelo.com. | Twitter: @kig | Github: @kigster

SCHEMA DESIGN FOR HORIZONTAL SHARDING

Proprietary and
Confidential

https://github.com/wanelo/sequel-schema-sharding

user_id
product_id
collection_id
created_at

index__on_user_id_and_collection_id

UserSaves Sharded by user_id

product_id
user_id
updated_at

index__on_product_id_and_user_id
index__on_product_id_and_updated_at

ProductSaves Sharded by product_id• We needed two lookups, by user_id and
by product_id hence we needed two
tables, independently sharded

• Since saves is a join table between user,
product, collection, we did not need
unique ID generated

• Composite base62 encoded ID:
fpua-1BrV-1kKEt

https://github.com/wanelo/sequel-schema-sharding

Page “From Obvious to Ingenious: Scaling Web Applications atop PostgreSQL”, by Konstantin Gredeskoul, CTO Wanelo.com. | Twitter: @kig | Github: @kigster

SPREADING YOUR SHARDS :)

Proprietary and
Confidential

• We split saves into 8192 logical shards,
distributed across 8 PostgreSQL databases

• Running on 8 virtual zones spanning 2
physical SSD servers, 4 per compute node

• Each database has 1024 schemas (twice,
because we sharded saves into two tables)

Use our ruby library to do the this: 
https://github.com/wanelo/sequel-schema-sharding

2 x 32-core 256GB RAM
16-drive SSD RAID10+2

PostgreSQL 9.3

1

3 4

2

https://github.com/wanelo/sequel-schema-sharding

“From Obvious to Ingenious: Scaling Web Applications atop PostgreSQL”, by Konstantin Gredeskoul, CTO Wanelo.com. | Twitter: @kig | Github: @kigster Page
Proprietary and
Confidential

QUESTION:

HOW CAN WE MIGRATE THE DATA FROM THE OLD
BACKEND TO THE NEW HORIZONTALLY SHARDED ONE,
BUT WITHOUT ANY DOWNTIME?

Page “From Obvious to Ingenious: Scaling Web Applications atop PostgreSQL”, by Konstantin Gredeskoul, CTO Wanelo.com. | Twitter: @kig | Github: @kigster

YES! NEW RECORDS GO TO BOTH

Proprietary and
Confidential

HTTP Service

Old Non-Sharded Backend

New Sharded Backend

1

3 4

2

Read/Write

Background
Worker

Enqueue

Sidekiq Queue

Create Save

Page “From Obvious to Ingenious: Scaling Web Applications atop PostgreSQL”, by Konstantin Gredeskoul, CTO Wanelo.com. | Twitter: @kig | Github: @kigster

Proprietary and
Confidential

HTTP Service

Old Non-Sharded Backend

New Sharded Backend

1

3 4

2

Read/Write

Background
Worker

Enqueue

Sidekiq Queue

Create Save

Migration Script

MIGRATE OLD ROWS
We migrated several times before we got this right…

Page “From Obvious to Ingenious: Scaling Web Applications atop PostgreSQL”, by Konstantin Gredeskoul, CTO Wanelo.com. | Twitter: @kig | Github: @kigster

Proprietary and
Confidential

SWAP OLD AND NEW BACKENDS

HTTP Service

Old Non-Sharded Backend

New Sharded Backend

1

3 4

2Read/Write

Background
Worker

Enqueue

Sidekiq Queue

Create Save

“From Obvious to Ingenious: Scaling Web Applications atop PostgreSQL”, by Konstantin Gredeskoul, CTO Wanelo.com. | Twitter: @kig | Github: @kigster Page

HORIZONTAL SHARDING CONCLUSIONS

Proprietary and
Confidential

• This is the final destination of any scalable architecture:
just add more boxes

• Pretty sure we can now support 1,000 - 100,000
inserts/second by scaling out wide

• This effort took 2 months of 2 engineers, including
the migration, and we managed to do it with zero
downtime.

https://github.com/wanelo/sequel-schema-sharding

• You can arrive there incrementally, like we did, without
too much added cost. But don’t start with this on a new
application!

https://github.com/wanelo/sequel-schema-sharding

Proprietary and
Confidential

MICRO SERVICES ARCHITECTURE: NEW RELIC MAP

Page “From Obvious to Ingenious: Scaling Web Applications atop PostgreSQL”, by Konstantin Gredeskoul, CTO Wanelo.com. | Twitter: @kig | Github: @kigster

THOUGHTS ON MICRO-SERVICES

Proprietary and
Confidential

• The new micro-services infrastructure complexity
does not come for free

• It requires new code, new automation, testing,
deployment, monitoring, graphing, maintenance
and upgrades, and comes with it’s own unique set
of bugs and problems.

• But the advantages, in this case, by far supersede
the cost, particularly with billion+ sized data sets,
and/or large teams:

• Autonomy by ownership: a dedicated team for
each service (aka Twitter model)

• Each service can be scaled up independently.https://sudo.hailoapp.com/services/2015/03/09/journey-into-a-microservice-world-part-3/

https://sudo.hailoapp.com/services/2015/03/09/journey-into-a-microservice-world-part-3/

Page “From Obvious to Ingenious: Scaling Web Applications atop PostgreSQL”, by Konstantin Gredeskoul, CTO Wanelo.com. | Twitter: @kig | Github: @kigster

• Hopefully you can see that it is
possible to scale application to
millions of users methodically, and
incrementally.

• Patterns presented here can be
readily copied, and implemented on
any application that’s running slow, or
having difficulty supporting a growing
user-base. Congrats, these are great
problems to have!

105

CONCLUDING THOUGHTS

Page “From Obvious to Ingenious: Scaling Web Applications atop PostgreSQL”, by Konstantin Gredeskoul, CTO Wanelo.com. | Twitter: @kig | Github: @kigster 106

ACKNOWLEDGEMENTS
Finally, our learnings and discovery of these solutions
would not have been possible without:

• Obsessive monitoring and debugging, made
possible by SmartOS, PostgreSQL and such tools as:
dTrace, htop, vfsstat, iostat, prstat, nagios, statsd,
graphite

• Excellent performance insight products from
NewRelic and Circonus

• Help from the wonderful folks at PGExperts and
Joyent

• And relentless professionalism, zeal and ingenuity of
the Wanelo’s Engineering Team.This is an early Wanelo team watching

“Mean Girls” as part of cultural education.

Thanks!
 
github.com/wanelo
github.com/wanelo-chef
 
Wanelo’s Technical Blog
building.wanelo.com

Personal Technical Blog:
kig.re

twitter.com/kig

github.com/kigster

linkedin.com/in/kigster

slideshare.net/kigster

https://github.com/wanelo
https://github.com/wanelo-chef
http://building.wanelo.com
https://kig.re
http://linkedin.com/in/kigster
http://slideshare.net/kigster

