
By Konstantin Gredeskoul

RUBY CONCURRENCY
for TaskRabbit

WHO AM I?
I've written production Ruby Code since 2007.

I've published over 40 Ruby Gems.
They've been downloaded about 20,000,000 times total.

I spoke at RubyConf in 2015.
My presentations have been viewed by over 200,000 people.

I sometimes switch to Ruby in a social conversation.
But mostly, because I love to spread Ruby Luv, and NOT Coronavirus.

Who am I, and why should you care?

LET'S START YOU UP WITH A
SHORT SELF-TEST

OF HOW WELL YOU UNDERSTAND
RUBY'S CONCURRENCY MODEL BEFORE THE TALK.

QUESTION:
TO FULLY UTILIZE ALL AVAILABLE CORES ON A

MULTI-CORE SERVER, WE SHOULD...

A) RUN ONE RUBY PROCESS WITH MANY THREADS
B) RUN SEVERAL SINGLE-THREADED RUBY PROCESSES
C) RUN AS MANY RUBY PROCESSES AS THE NUMBER OF CPU CORES AVAILABLE
D) RUN ONE RUBY PROCESS THAT FORKS THOUSANDS OF WORKERS
C) RUN AS MANY RUBY PROCESSES AS THE NUMBER OF CPU CORES AVAILABLE

WHAT SHOULD YOU TAKE AWAY FROM THIS TALK?
1. You'll learn where it is

appropriate to use Threads in
MRI Ruby applications and
when it is not.

2. Likewise, when is it
appropriate to use multiple
Ruby Processes, how many
should you start, and how?

3. How to determine the optimal
number of threads per process.

4. List of tools that are available to
you in addition to the raw Thread
class

5. And finally, how to write thread-
safe code and detect unsafe code.

CONCURRENT:
TWO QUEUES AND ONE COFFEE MACHINE.

PARALLEL:
TWO QUEUES AND TWO COFFEE MACHINES.

Joe Armstrong - “Erlang and other stuff”

EXAMPLE 1.

CONCURRENT:
TWO QUEUES AND ONE COFFEE MACHINE.

PARALLEL:
TWO QUEUES AND TWO COFFEE MACHINES.

Joe Armstrong - “Erlang and other stuff”

EXAMPLE 1.

CONCURRENCY
CAN HAPPEN WHEN THERE IS ONLY ONE CORE – CONCURRENCY IS ABOUT
DESIGN – IMPROVED PERFORMANCE IS A SIDE EFFECT

PARALLELISM
REQUIRES TWO PROCESSOR CORES – NO MATTER THE LANGUAGE/RUNTIME –
A PROCESSOR CORE CAN ONLY EXECUTE ONE INSTRUCTION AT A TIME

Rob Pike "Concurrency is not Parallelism"

EXAMPLE 2.

CONCURRENT
RUBY THREADS, FIBERS, CELLULOID, GUILD (RUBY 3.0)

PARALLEL
OS PROCESSES: UNICORN WORKERS, SIDEKIQ WORKERS

EXAMPLE 3 — RUBY PRIMITIVES CATEGORIZED

CONCURRENCY VS PARALLELISM

MULTITHREADING IN THE UNIX OS
‣ UNIX OS manages threads

of execution across all
running processes

‣ When the operating system
pauses the execution of
one thread to resume
execution of another, it's
called a “context switch”

Critically, each core can only run one thread at a time 🚀

‣ No programming language can
preempt an operating system
context switch.

‣ You can monitor the number of
context switches per process
using system tools, such as:

dtrace, latency, fs_usage

SO HOW DOES THIS AFFECT RUBY?

GLOBAL INTERPRETER LOCK
"GIL"

WHAT IS THIS “GLOBAL INTERPRETER LOCK”?

▸ Every programming language/runtime must have internal
logic to deal with operating system context switches and
across its own concurrency constructs

▸ Some languages run one thread per processor and handle
context switching internally

▸ Other languages let the operating system manage all
concurrency and context switching

RUBY USES THE GIL TO PROTECT ITS INTERNAL STATE ACROSS OS
CONTEXT SWITCHES

FACT:

IMPLICATIONS OF “GIL" IN PRACTICE
▸ Only one “unit” of Ruby code can execute at any given time –

although there may be multiple threads and multiple
processors, executing code will regularly be blocked by the
GIL

▸ When given multiple cores MRI Ruby is unable to experience
true parallelism (this is not the case with jRuby and Rubinius)

▸ The Ruby runtime guarantees that it will always be in a
consistent internal state – but it makes no guarantees about
your code

LET'S LOOK AT A COUPLE OF EXAMPLES TO
DIG A BIT DEEPER INTO GIL'S

IMPLICATIONS....

EXAMPLE 1: COMPUTE CHECKSUMS

require 'digest/md5'

10.times.map do
 Thread.new do
 Digest::MD5.hexdigest(rand)
 end
end.each(&:value)

EXAMPLE 2: LOAD REMOTE URL
require 'open-uri'

10.times.map do
 Thread.new do
 open('http://zombo.com')
 end
end.each(&:value)

TO USE CONCURRENCY OR NOT TO USE? THAT IS THE QUESTION.

▸ Let’s say we we need to compute a
checksum on each object in an array.

▸ We know that computing checksum is
an operation on CPU and it requires no
IO.

▸ Question:
Should our implementation use threads
(or a thread pool) to parallelize our
computation and complete the task
faster?

▸ Answer:
Absolutely not. If each checksum
computation requires no IO and only
CPU, there is zero benefit in using
threads in the MRI Ruby.

EXAMPLE 1: COMPUTING CHECKSUMS - SOLUTION

EXAMPLE 1: COMPUTE CHECKSUMS

require 'digest/md5'

10.times.map do
 Thread.new do
 Digest::MD5.hexdigest(rand)
 end
end.each(&:value)

EXAMPLE 2: CRAWLING THE WEB
▸ Let’s say we want download remote

content given an array of URLs.

▸ We know that reading from a remote URL
over the network is an operation on IO

▸ Question:
Should our implementation create
threads to parallelize our computation so
that we can fetch URLs a lot faster?

▸ ✔
Definitely!
Use a Thread Pool to prevent creating too
many threads Each thread will spend some
time waiting on IO: network is slow.

EXAMPLE 2: LOAD REMOTE URL
require 'open-uri'

10.times.map do
 Thread.new do
 open('http://zombo.com')
 end
end.each(&:value)

CONCURRENCY TOOLBOX

3.1 CONCURRENCY IN
RUBY STANDARD LIBRARY

▸Multi-Process (Puma, Unicorn, Sidekiq + sidekiq-pool)

▸Multi-Threaded (Puma, Sidekiq)

▸ Evented (Thin)

RUBY SUPPORTS THREE CORE FORMS OF CONCURRENCY

▸ Ruby offers ONLY ONE
thread-safe class: Queue!

▸ One or more threads can add
work to the queue:

require 'thread'
@queue = Queue.new
@queue << job

BUILT-IN PRIMITIVES

▸ One or more threads can retrieve the
work concurrently with other threads:

url = @queue.pop

▸ If Queue is insufficient for your
needs, there are gems that provide
thread-safe versions of Array, Hash,
and other standard data structures.

3.2 CONCURRENCY PRIMITIVES
PROVIDED BY GEMS

THREAD POOL
▸ Most well-known concurrency primitive is a thread pool: a data

structure that maintains either fixed, or capped number of threads
that can perform work by reading a thread-safe Queue:

THREAD POOLS — RUBY-THREAD
▸ Gem ruby-thread provides

an easy extension to the
built-in Thread Class:

require 'thread/pool'

pool = Thread.pool(4)

10.times {
 pool.process {
 sleep 2

 puts 'lol'
 }
}

pool.shutdown

THREAD POOLS — CONCURRENT-RUBY
▸ Gem concurrent-ruby

provides a massive list of
concurrent and thread-safe
primitives, and is likely the
most definitive concurrency
ruby library today.

create a pool with fixed 5 threads
pool = Concurrent::FixedThreadPool.new(5)
pool.post do
 # perform some parallel work
end

As with all thread pools, execution resumes
immediately here in the caller thread

this pool is smarter — it can resize itself
based on the queue size
pool = Concurrent::ThreadPoolExecutor.new(
 min_threads: 5,
 max_threads: 5,
 max_queue: 100,
 fallback_policy: :caller_runs
)

CONCURRENT-RUBY

▸ This gem contains
everything you'll ever need
to correctly use concurrency
in ruby.

▸ Alas, it also contains plenty
of things you not likely to
need, ever.

RUBY GEM — PARALLEL
▸ Gem parallel provides an easy to way to start additional ruby processes

and distribute work among them.
It supports both a thread pool, and a process pool, as shown in the
example:

Parallel.each(User.all, in_threads: 8) do |user|
 ActiveRecord::Base.connection_pool.with_connection do
 user.update_attribute(:some_attribute, some_value)
 end
end

maybe helps: reconnect once inside every fork
Parallel.each(User.all, in_processes: 8) do |user|
 @reconnected ||= User.connection.reconnect! || true
 user.update_attribute(:some_attribute, some_value)
end

SINGLE & MULTI-CORE CONCURRENCY IN RUBY — NOTABLE GEMS

▸ concurrent-ruby: thread-safe primitives such as Array, Hash,..

▸ sucker-punch: single-process async jobs

▸ eventmachine: event-based concurrency with fibers

▸ ruby-thread: extensions to Thread class such as a Pool, etc.

▸ parallel: both multi-process and multi-threaded jobs

▸ sidekiq: multu-threaded multi-process job processor

▸ celluloid: actor model sidekiq is based on, unmaintained.

▸ atomic: atomic primitives, deprecated in favor of ruby-concurrency

https://github.com/ruby-concurrency/concurrent-ruby
https://github.com/brandonhilkert/sucker_punch
https://github.com/eventmachine/eventmachine
https://github.com/meh/ruby-thread
https://github.com/grosser/parallel
https://sidekiq.org/
https://github.com/celluloid/celluloid
https://github.com/ruby-concurrency/atomic

RUBY GEMS OFFERING MULTI-PROCESS CONCURRENCY

▸ sidekiq
— perhaps the easiest way to
utilize cores (but requires
Enterprise for multi-process)

▸ sidekiq-pool
— an open source gem that
manages a set of Sidekiq workers

▸ childprocess
— great gem that spawns
processes on the background

▸ unicorn, puma, and thin
— all support multi-worker
configuration

▸ But only Puma & Thin support ruby multi-threading.

https://sidekiq.org
https://github.com/vinted/sidekiq-pool
https://github.com/enkessler/childprocess

HOW MANY THREADS?
HOW MANY PROCESSES?

IN THIS SECTION WE DISCUSS HOW ONE WOULD FIGURE OUT IDEAL SETTINGS
FOR THE NUMBER OF RUBY PROCESSES, AND THE NUMBER OF RUBY THREADS
TO CONFIGURE EACH PROCESS WITH.

IT'S NOT A TRIVIAL EXCERCISE, BUT IF DONE RIGHT, ENSURES FULL
UTILIZATION OF THE VIRTUALIZED HARDWARE.

IN OTHER WORDS — IT SAVES $$.

Your typical CFO.

DETERMINING THE NUMBER OF PROCESSES TO RUN

▸ This part is easy — if you are able to start
multiple Ruby processes (eg, if you are running
puma, unicorn or sidekiq), start as many ruby
processes as you have CPU cores available to you
on your virtual instance.

That's it. Have 16 cores? Start 16 ruby processes.

DETERMINING THE NUMBER OF THREADS

▸ Figuring out number of threads is a bit trickier.

▸ Sidekiq defaults to 15 threads per process.
This can be quite a lot.

▸ The truth is you must monitor the process and
observe "context switches" — if they happen a lot,
reduce # of threads. Otherwise increase.

YOU CAN USE NEWRELIC AND DATADOG TO DETERMINE THE
OPTIMAL NUMBER OF THREADS IN YOUR APPLICATION...

ZOOMING INTO A MULTI-THREADED RUBY PROCESS

▸ A ruby process with two threads
can take advantage of pauses
caused by waiting on IO (i.e.
database response, file read,
network, etc).

READING NEW RELIC: WAITING ON IO VERSUS CPU BURN

THREAD SAFETY

WHAT MAKES MULTI-THREADED RUBY PROGRAM SAFE?
▸ Threads should never change variables that are

visible to other threads.

▸ This includes class instance variables, class
globals, and any other variables visible to threads.

▸ If you must access it, wrap it in a Mutex, like so:

▸ Rule of thumb: avoid using Thread.new directly
inside of a web request lifecycle...

▸ Instead — use Sidekiq + Sidekiq Batch API
which allows UI to query the status of the
job.

require "thread"

class Counter
 def initialize
 @counter = 0
 @mutex = Mutex.new
 end

 def increment
 @mutex.synchronize do
 @counter += 1
 end
 end
end

WHAT MAKES A RUBY PROGRAM NOT THREAD SAFE?

‣ Prefer to instantiate classes in
each thread (like Rails instantiates
Controllers for each web request).

‣ Use Queue to pass data between
Ruby threads

‣ Avoid accessing and writing to
Class Instance variables or any
other globals.

‣ Simply put, when you share
mutable state between threads

‣ None of the core data structures
(except for Queue) in Ruby are
thread-safe.

‣ Use Thread.current[] to store
thread-specific variables

ISSUES RESULTING FROM MIS-USE OF CONCURRENCY

▸ may saturate all CPU

▸ may underutilize the CPU

▸ may lock ruby processes
and web request
processing

▸ may take production down

▸ may produce extremely hard
to find bugs

▸ may result in you having to
buy beer for your
teammates...

THREAD LIGHTLY

▸ https://pragprog.com/book/jsthreads/working-with-ruby-threads

▸ https://github.com/meh/ruby-thread

▸ https://www.toptal.com/ruby/ruby-concurrency-and-parallelism-a-practical-primer

▸ https://www.slideshare.net/JerryDAntonio/everything-you-know-about-the-gil-is-wrong

▸ https://github.com/jdantonio/concurrent-ruby-presentation

▸ https://joearms.github.io/published/2013-04-05-concurrent-and-parallel-programming.html

▸ https://brianchan.us/2017/05/27/concurrency-vs-parallelism/

▸ https://www.codebasehq.com/blog/ruby-threads-queue

▸ https://github.com/dasch/ruby-csp

ACKNOWLEDGEMENTS AND REFERENCES

https://pragprog.com/book/jsthreads/working-with-ruby-threads
https://github.com/meh/ruby-thread
https://www.toptal.com/ruby/ruby-concurrency-and-parallelism-a-practical-primer
https://www.slideshare.net/JerryDAntonio/everything-you-know-about-the-gil-is-wrong
https://github.com/jdantonio/concurrent-ruby-presentation
https://joearms.github.io/published/2013-04-05-concurrent-and-parallel-programming.html
https://brianchan.us/2017/05/27/concurrency-vs-parallelism/
https://www.codebasehq.com/blog/ruby-threads-queue
https://github.com/dasch/ruby-csp

	
https://github.com/kigster	
	
https://twitter.com/kig	
	
https://kig.re	
	
https://reinvent.one/	

KONSTANTIN GREDESKOUL

KIG@REINVENT.ONE

QUESTIONS?

http://github.com/kigster
http://twitter.com/kig
https://kig.re
https://reinvent.one/

