"DESIGNING DISTRIBLITED SOFTWARE FOR SI]ALE

@ [l in o by Kunsgmténzggfdeskuul , il (JJjQ L FOSSA

WHAT IS SOFTWARE DESIGN?

What we mean by "software design” is really just a

process of breaking down product requirements into
the necessary software components.

What Is often forgotten is that there are three ways to
look at any software design:

Software Design Process & Practices, June 2021 Slide 2

THREE "VIEWS™ INTO SOFTWARE DESIGN

Data Model, also referred to as a "structure’, and most
commonly mapped to rows in the database tables.

State Model, or "state machine” is responsible for the change
In structure over time.

System Model is a physical representation of software as It's
deployed onto the Infrastructure, such as the cloud, or K3s.

Software Design Process & Practices, June 2021 Slide 3

DESIGN DECISIONS HAVE LASTING IMPLIGATIONS

Designing data model in isolation often
leads to problems such as:

Whan you are given

Code or Logic Duplication
raature to owild, and to Jit bup

design a solution, 2arly taam Too rigid or too abstract interfaces
collaboration is absolutaly

|
- Performance problems
assantial

Lack of foresight, or vice versa:
premature optimization

Software Design Process & Practices, June 2021 Slide 4

COMMON PROBLENS WITH SOFTWARE DESIGN

When we are given a set of product This Is completely natural, but it
requirements, we begin by applying s also one of the reasons that
familiar constructs, such as design collaborating with senior

patterns, diagrams, database
schema relations, etc.

set of patterns, even if the
problem calls for a different
solution.

engineers on an early design
can lead to choosing a more
appropriate solution, while

Less experienced engineers are expanding the tool-set of less
more likely to re-apply a smaller experienced developers.

Software Design Process & Practices, June 2021

Slide a

Ultimataly, t

Iir JJJJ}L]JJE thing i
I the desgi
allocats tin
E gum ol

S o &

s

["EL :

'3§JJJJE
s, and
the cods is

WPltien,

most
[y
-

WHAT IS AN EFFECTIVE DESIGN PROCESS?

| would argue that brainstorming in person,
with 2-3 engineers next to a white-board is
the ideal setting for doing a sketch of the
solution design, I.e the data model
(structure) and state.

While document-based RFCs are a viable
alternative, ideally RFC should be written
only AFTER a design brainstorm takes
place, and capture the decisions made there.

Software Design Process & Practices, June 2021 Slide B

DESIGN PATTERNS

oU SUWRY, BUT ATt
IHEMS ALL

| CAN RAZ PATTERNS [N GO = __

EXPANDING YOUR TOOLKIT « INVALUABLE CLASSICS

| :). [\
Desion Patterns
[lvmvnt\ of Rt‘u_\ldl)l(‘
Object-Oriented Software
Erich Gamma

Richard Helm

Ralph Johnson
lohn Vlissides

“
‘D

SIS DONILNIWOD) TYNOISSTIOdd AT ISIM-NOSIAAY

/S / /
,///,'_;, P y/ /‘,t//// /,’,;/_,//_//// 205 . /el

PATTERNS OF

ENTERPRISE
APPLICATION
ARCHITECTURE

MARTIN FOWLER
Wi CoNtuimuions sy

Davip Ricr,

Marriew Formmer,

Epwaro Hiear,

ROBERT MEL, AND

RANDY STAFrORD

" ST AOMANIES T o

UML DISTILLED

THIRD EDITION

A BRIEF GUIDE TO THE STANDARD
OBJECT MODELING LANGUAGE

MARTIN FOWLER

Software Design Process & Practices, June 2021

NOIS3IA AILNSIHO-L0ANSQ ANV LDV EA. |\ A\

P RA C TICAL
OBJECT-ORIENTED
DESIGN

AN AGILE PARAIMER UsING RuUBY

SECOND EDITION

P SANDI METZ

<

Slide 8

i A
&y 11 ¥

RIS S) TS SR K
PH T s

DESIGN PATTERNS IN GO K3 CREATIONAL PATTERNS

https://github.com/tmrts/go-patterns

& Pattern Description
Builder Builds a complex object using simple objects
Factory Method | Defers instantiation of an object to a specialized function for creating instances
Object Pool | Instantiates and maintains a group of objects instances of the same type
Singleton Restricts instantiation of a type to one object

STRUCTURAL PATTERNS

Pattern Description
Decorator Adds behavior to an object, statically or dynamically
Proxy Provides a surrogate for an object to control it's actions

F O S S A Software Design Process & Practices, June 2021 Slide 3

https://github.com/tmrts/go-patterns/blob/master/creational/builder.md
https://github.com/tmrts/go-patterns/blob/master/creational/factory.md
https://github.com/tmrts/go-patterns/blob/master/creational/object-pool.md
https://github.com/tmrts/go-patterns/blob/master/creational/singleton.md
https://github.com/tmrts/go-patterns/blob/master/structural/decorator.md
https://github.com/tmrts/go-patterns/blob/master/structural/proxy.md

DESIGN PATTERNS IN GO B3 MESSAGING PATTERNS

https://github.com/tmrts/go-patterns

ua Pattern Description
Fan-In Funnels tasks to a work sink (e.g. server)
Fan-Out Distributes tasks among workers (e.g. producer)
Publish/Subscribe Passes information to a collection of recipients who subscribed to a topic
BEHAVIORAL PATTERNS
Pattern Description
Observer Provide a callback for notification of events/changes to data
Strateqy Enables an algorithm’s behavior to be selected at runtime

F O S S A Software Design Process & Practices, June 2021 Slide 10

https://github.com/tmrts/go-patterns/blob/master/messaging/fan_in.md
https://github.com/tmrts/go-patterns/blob/master/messaging/fan_out.md
https://github.com/tmrts/go-patterns/blob/master/messaging/publish_subscribe.md
https://github.com/tmrts/go-patterns/blob/master/behavioral/observer.md
https://github.com/tmrts/go-patterns/blob/master/behavioral/strategy.md

| SHARED, HIGHER-ORDER VOCABULARY

Knowing, and applying design
patterns in the right place makes it
easy to communicate ideas.

If you told me you were working on an
Adapter or a Decorator for some interface, |
would instantly have a pretty good idea
about the overall design. That's the power of
communicating in higher-order constructs.

Software Design Process & Practices, June 2021

The same applies to UML — the
graphical representation of the
structure, state, interactions,
systems architecture, and more.

Visual documentation is often
sufficient to explain how
something works, especially over
time (which is much harder to
explain in words).

Slide 11

e,
T

AN EXAMPLE: C1ASS STRUCTL

File

This shows that Directory is
Inode HE. . also a regular File that has the
Name same properties that File has,

but adds additional methods or
i data.

Close
N\

Parent

f we wanted to store the file
system in the database, another

Directory Enterprise Design Pattern applies:
File[] iles |] Single Table Inheritance.

Open

Close

lterate

F O S S A Software Design Process & Practices, June 2021 Slide 12

SUULEAN MA

" AN EXAMPLE:

f we are implementing a model
for Order Shipments, this
schema comes from an actual
project I've worked on.

For every new state that
shipment transitions to,
developers added a boolean flag.
|s that a good solution?

Let's look at a proper way to do
this next...

; FOSSA,

"0

order_shipments (

1d serial
order_ 1d

tracking :
Ls cancelled boolean
Ls_pending boolean

1S _1n_review boolean
Ls_ready_to_ship boolean

Ls_shipped boolean
Ls_delivered boolean

Software Design Process & Practices, June 2021

DEFAULT FALSE,
DEFAULT FALSE,
DEFAULT FALSE,
DEFAULT FALSE,
DEFAULT FALSE,
DEFAULT FALSE

Slide 13

| AN EXAMPLE: STATE MACHINE

https://qgithub.com/looplab/fsm

State Machine is another

incredibly useful design pattern
Y SV that defines concrete states,
R "y ; together with the valid and

ot 3 P
*g;'ép‘-.:‘y >
[o ey

v ot cuoyytaciogs invalid transitions between them.
A S et There could be one or more
i B 'starting” states, and one or

P L more "finish” states.
o it a® — siop ; .
| = One of the "finish" states could

; ~ Fulfillment be “error” or "failed".

) Tracks the shipment
oces to Fulfilled
to pr : Sing ; of the SubOrder, may have multiple

fulfillments per sub_order, when they are retried etc. :

..-.........d...................-...

Software Design Process & Practices, June 2021 Slide 14

AN EXAMPLE: S TATE MACRHINE IN TYPESURIP

DEFINITION STATE EVENTS

fetch initial: 'idle',
context: {
retries: 0
b
states: {
1dle: {
failure o8 i
do/ assign retries

idle loading e success

FETCH: 'loading'

¥
|
loading: {
on: {
RESOLVE: 'success',
REJECT: '"failure’

¥
¥

success: {
type: 'final'

li

failure: {
on: {

RETRY: { e 15
target: 'loading',

EVENTS

WHAT ARE THEY? WHEN DID THEY HAPPEN?
DID | MISS ANYTHING?

EVENTS AS FIRST CLASS CITIZENS

I'here is @ growing trend to
EjﬁHJ‘AJ/JJb iness ayents
in the application as structs,
or nasnes, pernaps using

JSON with JSON seheme
yalidatio

l-«

Whenever you update the
database, you are changing
state.

State changing is by definition
an Important event.

I'he event can be represented
by a JSON hash that is
published to the message bus.

Software Design Process & Practices, June 2021

Slide 17

EVENT: EXAMPLE

X
"success": true,
"users”: [
A 1
. "id": 1,
“”égf "fullname": "Michael Jordan",
L "phone”: null,

"email": "superadmin@gmail.com",
"created_at": "2018-94-09 13:20:38",
"updated_at": "2018-04-10 ©09:38:08",

o f this message is published to eg. RabbitM0, or

"id": 1,

i e Superemniferator, Kafka, It's easy to build micro-services that are

ereated_at; 2018-04-09 13:20:38" fully decoupled from user registration.
"pivot": {.d": 5

| releien: 1 In other words, micro-service understands user

¥y

Cen created event, but the application has no
knowledge of the micro-service downstream.

"description”: "Administrator”,
"created_at": "2018-904-09 13:20:38",
"updated_at": "2018-04-09 13:20:38",

"Si‘-"Ot" : {
"user_id": 1,
"role_id": 2

Software Design Process & Practices, June 2021 Slide

* SOFTWARE DESIGN « CONCLUSIONS

Creating a lasting design that can withstand
the test of time for any software is hard. It's
both science and art and a bit of luck.

It's rarely a good
in isolation. Two

(that's why we sti

horses).

nvestment.

FOSSA

Idea to design entirely alone
neads are better than one

Il have Mounted Police on

Collaboration at the design stage has the
niggest impact and the return on the

UML and Design Patterns are highly effective
tools of collaboration and communication.

Investing some time into learning how to express
the design via UML is priceless

The book "UML Distilled" is only ~ 160 pages long and is one
of the most impactful programming books I've ever read.

Finally, "Event-driven” architectures are gaining
popularity because they facilitate decoupling of
MICro-Services.

Software Design Process & Practices, June 2021 Slide 20

thub.com/kigster

0.re

FOSSA

twitter.com/kig
github.com/kigster
inkedin.com/in/kigster
slideshare.net/kigster

>

https://github.com/kigster
http://linkedin.com/in/kigster
http://slideshare.net/kigster

