
by Konstantin Gredeskoul @kigster @kigster

DESIGNING DISTRIBUTED SOFTWARE FOR SCALE

June 2021

Software Design Process & Practices, June 2021 Slide
Proprietary and
Confidential

2

WHAT IS SOFTWARE DESIGN?

• What we mean by "software design" is really just a
process of breaking down product requirements into
the necessary software components.

• What is often forgotten is that there are three ways to
look at any software design:

Software Design Process & Practices, June 2021 Slide
Proprietary and
Confidential

• Data Model, also referred to as a "structure", and most
commonly mapped to rows in the database tables.

• State Model, or "state machine" is responsible for the change
in structure over time.

• System Model is a physical representation of software as it's
deployed onto the infrastructure, such as the cloud, or K8S.

3

THREE "VIEWS" INTO SOFTWARE DESIGN

Software Design Process & Practices, June 2021 Slide

When you are given a
feature to build, and to

design a solution, early team
collaboration is absolutely

essential

• Designing data model in isolation often
leads to problems such as:
• Code or Logic Duplication
• Too rigid or too abstract interfaces
• Performance problems
• Lack of foresight, or vice versa:

premature optimization

DESIGN DECISIONS HAVE LASTING IMPLICATIONS

4

Software Design Process & Practices, June 2021 Slide
Proprietary and
Confidential

• When we are given a set of product
requirements, we begin by applying
familiar constructs, such as design
patterns, diagrams, database
schema relations, etc.

• Less experienced engineers are
more likely to re-apply a smaller
set of patterns, even if the
problem calls for a different
solution.

5

COMMON PROBLEMS WITH SOFTWARE DESIGN

• This is completely natural, but it
is also one of the reasons that
collaborating with senior
engineers on an early design
can lead to choosing a more
appropriate solution, while
expanding the tool-set of less
experienced developers.

Software Design Process & Practices, June 2021 Slide
Proprietary and
Confidential

• I would argue that brainstorming in person,
with 2-3 engineers next to a white-board is
the ideal setting for doing a sketch of the
solution design, i.e the data model
(structure) and state.

• While document-based RFCs are a viable
alternative, ideally RFC should be written
only AFTER a design brainstorm takes
place, and capture the decisions made there.

6

WHAT IS AN EFFECTIVE DESIGN PROCESS?

Ultimately, the most
important thing is to actually

DO the design: meaning:
allocate time to think about

the solutions, trade-offs, and
do that BEFORE the code is

written.

DESIGN PATTERNS

7

I CAN HAZ PATTERNS IN GO?

SO SOWRY, BUT I ATE
THEMS ALL

Software Design Process & Practices, June 2021 Slide
Proprietary and
Confidential

8

EXPANDING YOUR TOOLKIT • INVALUABLE CLASSICS

Software Design Process & Practices, June 2021 Slide
Proprietary and
Confidential

9

DESIGN PATTERNS IN GO
https://github.com/tmrts/go-patterns

Pattern Description
Builder Builds a complex object using simple objects

Factory Method Defers instantiation of an object to a specialized function for creating instances
Object Pool Instantiates and maintains a group of objects instances of the same type
Singleton Restricts instantiation of a type to one object

CREATIONAL PATTERNS◘

Pattern Description

Decorator Adds behavior to an object, statically or dynamically

Proxy Provides a surrogate for an object to control it's actions

STRUCTURAL PATTERNS

https://github.com/tmrts/go-patterns/blob/master/creational/builder.md
https://github.com/tmrts/go-patterns/blob/master/creational/factory.md
https://github.com/tmrts/go-patterns/blob/master/creational/object-pool.md
https://github.com/tmrts/go-patterns/blob/master/creational/singleton.md
https://github.com/tmrts/go-patterns/blob/master/structural/decorator.md
https://github.com/tmrts/go-patterns/blob/master/structural/proxy.md

Software Design Process & Practices, June 2021 Slide
Proprietary and
Confidential

10

DESIGN PATTERNS IN GO
https://github.com/tmrts/go-patterns
MESSAGING PATTERNS◘

Pattern Description

Fan-In Funnels tasks to a work sink (e.g. server)

Fan-Out Distributes tasks among workers (e.g. producer)

Publish/Subscribe Passes information to a collection of recipients who subscribed to a topic

Pattern Description

Observer Provide a callback for notification of events/changes to data

Strategy Enables an algorithm's behavior to be selected at runtime

BEHAVIORAL PATTERNS

https://github.com/tmrts/go-patterns/blob/master/messaging/fan_in.md
https://github.com/tmrts/go-patterns/blob/master/messaging/fan_out.md
https://github.com/tmrts/go-patterns/blob/master/messaging/publish_subscribe.md
https://github.com/tmrts/go-patterns/blob/master/behavioral/observer.md
https://github.com/tmrts/go-patterns/blob/master/behavioral/strategy.md

Software Design Process & Practices, June 2021 Slide
Proprietary and
Confidential

• Knowing, and applying design
patterns in the right place makes it
easy to communicate ideas.
• If you told me you were working on an

Adapter or a Decorator for some interface, I
would instantly have a pretty good idea
about the overall design. That's the power of
communicating in higher-order constructs.

11

SHARED, HIGHER-ORDER VOCABULARY

• The same applies to UML — the
graphical representation of the
structure, state, interactions,
systems architecture, and more.

• Visual documentation is often
sufficient to explain how
something works, especially over
time (which is much harder to
explain in words).

Software Design Process & Practices, June 2021 Slide
Proprietary and
Confidential

12

AN EXAMPLE: CLASS STRUCTURE

• This shows that Directory is
also a regular File that has the
same properties that File has,
but adds additional methods or
data.

• If we wanted to store the file
system in the database, another
Enterprise Design Pattern applies:
Single Table Inheritance.

Software Design Process & Practices, June 2021 Slide
Proprietary and
Confidential

13

AN EXAMPLE: BOOLEAN MADNESS
• If we are implementing a model

for Order Shipments, this
schema comes from an actual
project I've worked on.

• For every new state that
shipment transitions to,
developers added a boolean flag.

• Is that a good solution?

• Let's look at a proper way to do
this next...

Software Design Process & Practices, June 2021 Slide
Proprietary and
Confidential

14

AN EXAMPLE: STATE MACHINE

• State Machine is another
incredibly useful design pattern
that defines concrete states,
together with the valid and
invalid transitions between them.

• There could be one or more
"starting" states, and one or
more "finish" states.

• One of the "finish" states could
be "error" or "failed".

https://github.com/looplab/fsm

Software Design Process & Practices, June 2021 Slide
Proprietary and
Confidential

15

AN EXAMPLE: STATE MACHINE IN TYPESCRIPT
https://xstate.js.org/docs/guides/start.html

EVENTS

16

WHAT ARE THEY? WHEN DID THEY HAPPEN?
DID I MISS ANYTHING?

Software Design Process & Practices, June 2021 Slide

There is a growing trend to
define key business events

in the application as structs,
or hashes, perhaps using
JSON with JSON schema

validation.

• Whenever you update the
database, you are changing
state.

• State changing is by definition
an important event.

• The event can be represented
by a JSON hash that is
published to the message bus.

EVENTS AS FIRST CLASS CITIZENS

17

Software Design Process & Practices, June 2021 Slide

EVENT: EXAMPLE

• If this message is published to eg. RabbitMQ, or
Kafka, it's easy to build micro-services that are
fully decoupled from user registration.

• In other words, micro-service understands user
created event, but the application has no
knowledge of the micro-service downstream.

WELL-DESIGNED SOFTWARE IS SIMPLY
SOFTWARE THAT IS EASY TO CHANGE.

19

— DAVE THOMAS

Software Design Process & Practices, June 2021 Slide

• Creating a lasting design that can withstand
the test of time for any software is hard. It's
both science and art and a bit of luck.

• It's rarely a good idea to design entirely alone
in isolation. Two heads are better than one
(that's why we still have Mounted Police on
horses).

• Collaboration at the design stage has the
biggest impact and the return on the
investment.

20

SOFTWARE DESIGN • CONCLUSIONS

• UML and Design Patterns are highly effective
tools of collaboration and communication.

• Investing some time into learning how to express
the design via UML is priceless

• The book "UML Distilled" is only ~ 160 pages long and is one
of the most impactful programming books I've ever read.

• Finally, "Event-driven" architectures are gaining
popularity because they facilitate decoupling of
micro-services.

Thanks!

https://github.com/kigster
https://kig.re

twitter.com/kig

github.com/kigster

linkedin.com/in/kigster

slideshare.net/kigster

21

https://github.com/kigster
http://linkedin.com/in/kigster
http://slideshare.net/kigster

