RAILS MIGRATIUNS

9@ HealthSherpa

WHY SHOULD YOU LISTEN TO ME?

» | have been using PostgreSQL since
2004 (version 7.4)

» |n 2012 my team scaled wanelo.com to
serve 8,000 rack requests per second.

» This equals to about 100K PostgreSQL
transactions per second (!!!)

» |In 2014 | spoke at SF PG User Group
(PUG) about how we scaled Wanelo

Slides: https://bit.ly/scaling-pg

%@ HealthSherpa PostgreSOL Done Right - By Konstantin Gredeskoul CONFIDENTIAL

http://wanelo.com
https://bit.ly/scaling-pg

3 .

¢\' " lroll-_a

EST PRACTICES FOR RAILS MIGRATIONS

» Avoid modifying data in schema
migrations

» Rails guide says:

MIGRATIONS ARE A FEATURE OF ACTIVE RECORD THAT ALLOWS YOU TO EVOLVE
YOUR DATABASE SCHEMA OVER TIME. RATHER THAN WRITE SCHEMA MODIFICATIONS
IN PURE SQL. MIGRATIONS ALLOW YOU TO USE AN EASY RUBY DSL TO DESCRIBE
CHANGES TO YOUR TABLES.

» There is no word "data" anywhere...

» Nor there is a mention of Rails Models.

'I HealthSherpa PostgreSOL Done Right - By Konstantin Gredeskoul CONFIDENTIAL Page 4

S FUR RAILS MIGRATIONS (CTD).)

: :) g% ™
P Py
. L
Sy gt £ A
"" Py 4 1‘
0. N B A e
e L.
8 3
%1 sl
YR e G o
ey Sl
LRLE Y
> "ol
£ f“f: 1
& e
CARIR I
et Pock: |
R iy — — L/
. 3 SRRy
LY . ..3 ("
g
'-“/‘_"". &7 ¢ 1
save & (hIN
J .‘\"’ “
R G Ny
I T T
i "\‘yr_!'*‘, v"'ﬂ
B A |
ek = &
W, St
1o TN R ¥ i
4

» \We have "data_migrate" gem specifically for the
purposes of data migrations, although for long-
running migrations it's better to write rake tasks and
execute them interactively.

» \Whether using schema or data migrations, avoid
using model classes.

» Using things like this is discouraged:

User.create!(...)

9@ HealthSherpa

PostgreSQL Done Right - By Konstantin Gredeskoul CONFIDENTIAL Page 5

WY 1S 1T
LEVERAGE

9@ HealthSherpa

CONS

e ACT

RED A POOR PRACTICE 10

= =

RECURD SUBCLASS

ES [N

By Konstantin Gredeskoul CONFIDENTIAL

AN EXAMPLE FROM THE REPO

%P Health

db/migrate/20131217214153 move agent state license column_to agent licenses.rb
MoveAgentStateLicenseColumnToAgentLicenses < ActiveRecord: :Migration
Agent < ApplicationRecord

Agent. : |agent]|
license AgentLicense.new(:agent => agent,
:state => agent. s
:license number => agent.
license.

)
FOUSTON, WE HAVE A PRO

remove_column :agents, :state id
remove column :agents, :state license
Agent.

removed for brevity

UJ

BlL

UJ

ElM

Page

IEST PRACTICE

S FUR RAILS MIGRATIONS

(CTD,)

» \Why is this line a problem?

license.

FOUSTON, WE HAV

E A PRO

» To answer this we should review how the migrations are used
throughout the life of the project.

» One of the fundamental expectations of any rails project is that this
command can create and migrate the database to current point:

rake db

:create && rake db:migrate

O

Bl

ElM

9@ HealthSherpa

PostgreSQL Done Right - By Konstantin Gredeskoul

CONFIDENTIAL

Page 8

WHY CAN'T WE USE MODELS IN MIGRATIONS?

» Because migrations should be "frozen in
time" and be able to build your schema by

lying | tal updates to th
3zl|é)a\/b|2§ellncremen dl updates to the AS A RESUI_T,
» However, model classes are constantly DB:MIGRATE RAKE
changing. New validations are added. TASK NO LONGER

» Old migration will not know of any such
changes, and when attempting to save a WO RKS
model, a recently added validation may
cause it to fail.

9@ HealthSherpa PostgreSQL Done Right - By Konstantin Gredeskoul CONFIDENTIAL

RE IS EXCHANGE-COMPARE TODAY?

» \When | joined the company | was unable to run

rake db:migrate

successftully.

» Today — it works! Likely due to fixes to migrations
and Rails 5 upgrade. Yay!

» Proof! (demo)

" HealthSherpa PostgreSOL Done Right - By Konstantin Gredeskoul CONFIDENTIAL Page

de (O.éns) INSERT INTO "schema_migrations" ("version") VALUES ($1) RETURNI At issuer_payout_rate data migration, could not find issuer 54322 to update
(0.1ms) COMMIT - InsuranceFull::Issuer Load (0.1ms) SELECT "insurance_full_issuers".x FROM "insurance_full_issuers" WHERE "insurance_full_issuers"."hios_issL

urance_full_issuers"."id" ASC LIMIT $2 [["hios_issuer_id", "18558"], ["LIMIT", 1]]
Migrating to AddIchraFieldsToFfmApplicant (20220315233810) State Load (0.1ms) SELECT "states".x FROM "states" WHERE "states"."short_name” IS NULL LINIT $1 [["LIMIT", 1]]

(6.1ms) BEGIN At issuer_payout_rate data migration, could not find issuer 18558 to update
= 20220315233810 AddIchraFieldsToFfmApplicant: migrating ==================== InsuranceFull::Issuer Load (0.1ms) SELECT "insurance_full_issuers".* FROM "insurance_full_issuers" WHERE "insurance_full_issuers"."hios_issL
-- add_column(:ffm_applicants, :offered_ichra, :boolean) urance_full_issuers"."id" ASC LIMIT $2 [["hios_issuer_id", "19636"], ["LIMIT", 1]]
(6.3ms) ALTER TABLE "ffm_applicants" ADD "offered_ichra" boolean State Load (0.2ms) SELECT "states".x FROM "states" WHERE "states"."short_name" IS NULL LIMIT $1 [["LIMIT", 1]]
- 0.0006s At issuer_payout_rate data migration, could no.t; find issuer 19636 to gpdate) .) .
__ add_col.unn(:ffl_app'l.tcants, :offered_tchra_sep, :boolean) InsuranceFt.lll..Is:uﬁr koad (0.2ms) SELES':T msurance{ul}_tssu:rs : FRON“ insurance_full_issuers"” WHERE "insurance_full_issuers"."hios_1issL
o . m m - . urance_full_issuers"."id" ASC LIMIT $2 [["hios_issuer_id", "97176"], ["LIMIT", 1]]
(0.2ms) ALTER TABLE "ffm_applicants” ADD "offered_ichra_sep" boolean State Load (0.2ms) SELECT ‘"states".x FROM "states" WHERE "states"."short_name" IS NULL LIMIT $1 [["LIMIT", 1]]
—> 0.0004s At issuer_payout_rate data migration, could not find issuer 97176 to update
= 20220315233810 AddIchraFieldsToFfmApplicant: migrated (0.0011s) =========== InsuranceFull::Issuer Load (0.1ms) SELECT "insurance_full_issuers".* FROM "insurance_full_issuers" WHERE "insurance_full_issuers"."hios_issL

urance_full_issuers”."id" ASC LIMIT $2 [["hios_issuer_id", "37160"], ["LIMIT", 1]]
SQL (0.2ms) INSERT INTO "schema_migrations" ("version") VALUES ($1) RETURNI State Load (0.1ms) SELECT "states".*x FROM "states" WHERE "states"."short_name" IS NULL LIMIT $1 [["LIMIT", 1]]

(8.1ms) COMMIT At issuer_payout_rate data migration, could not find issuer 37160 to update
’ InsuranceFull::Issuer Load (0.1ms) SELECT "insurance_full_issuers".x FROM "insurance_full_issuers" WHERE "insurance_full_issuers"."hios_issL
Migrating to BackfillFfmApplicantIchraFields (20220319035628) urance_full_issuers”."id" ASC LINIT $2 [["hios_issuer_id", "89364"], ["LIMIT", 1]]
(6.1ms) BEGIN State Load (0.1ms) SELECT "states".* FROM "states" WHERE "states"."short_name” IS NULL LIMIT $1 [["LIMIT", 1]]
= 20220319035628 BackfillFfmApplicantIchraFields: migrating ================= At issuer_payout_rate data migration, could not find issuer 89364 to update
ManagedPerson Load (1.6ms) SELECT "managed_people".* FROM "managed_people" InsuranceFull::Issuer Load (0.2ms) SELECT "insurance_full_issuers".x FROM "insurance_full_issuers" WHERE "insurance_full_issuers"."hios_issL
C LIMIT $1 [["LIMIT", 1000]] urance_full_issuers"."id" ASC LIMIT $2 [["hios_issuer_id", "74313"], ["LIMIT", 1]]
— .« miorated (B AREEe) meeeee—— State Load (0.1ms) SELECT "states".x FROM "states" WHERE "states"."short_name" IS NULL LIMIT $1 [["LIMIT", 1]]
= 20220319035628 BackfillFfmApplicantIchraFields: migrated (0.0855s) ========

At issuer_payout_rate data migration, could not find issuer 74313 to update

" " o " InsuranceFull::Issuer Load (0.1ms) SELECT "insurance_full_issuers".* FROM "insurance_full_issuers” WHERE "insurance_full_issuers"."hios_issL
SQL (0.3ms) INSERT INTO "schema_migrations" ("version") VALUES ($1) RETURNI ,rance full_issuers"."id" ASC LIMIT $2 [["hios_issuer_id", "31195"], ["LIMIT", 1]]

(6.1ms) COMMIT State Load (0.1ms) SELECT "states".x FROM "states" WHERE "states"."short_name" IS NULL LIMIT $1 [["LIMIT", 1]]
Migrating to AddCanonicalldToOffExApplications (20220321204019) At issuer_payout_rate data migration, could not find issuer 31195 to update
= 20220321204019 AddCanonicalldToOffExApplications: migrating =======z==z====== InsuranceFull:: Issuer Load (0.1ms) SELECT "insurance_full_issuers".* FROM "insurance_full_issuers" WHERE "insurance_full_issuers"."hios_issu
-- add_column(:off_ex_applications, :canonical_id, :string) urance_full_issuers"."id" ASC LIMIT $2 [["hios_issuer_id", "60536"], ["LIMIT", 1]]

State Load (0.1ms) SELECT "states".*x FROM "states" WHERE "states"."short_name" IS NULL LIMIT $1 [["LIMIT", 1]]
At issuer_payout_rate data migration, could not find issuer 60536 to update
—> 0.0003s InsuranceFull::Issuer Load (0.1ms) SELECT "insurance_full_issuers".x FROM "insurance_full_issuers" WHERE "insurance_full_issuers"."hios_issL
-- add_index(:off_ex_applications, :canonical_id, {:algorithm=s>:concurrently}) urance_full_issuers"."id" ASC LINIT $2 [["hios_issuer_id", "27248"], ["LIMIT", 1]]
(2.3ms) CREATE INDEX CONCURRENTLY "index_off_ex_applications_on_canonical State Load (8.1ms) SELECT "states".x FROM "states" WHERE "states"."short_name" IS NULL LIMIT $1 [["LIMIT", 1]]
- 0.0044s At issuer_payout_rate data migration, could not find issuer 27248 to update
202203212040819 AddCanonicalldToOffExApplications: migrated (0.00558) ====== InsuranceFt_xu::Issuer.' Load (8.1ms) SELECT "insurance_full_issuers".* FROM "insurance_full_issuers" WHERE "insurance_full_issuers"."hios_issL
urance_full_issuers"."id" ASC LIMIT $2 [["hios_issuer_id", "15668"], ["LIMIT", 1]]
State Load (0.1ms) SELECT "states".x FROM "states" WHERE "states"."short_name" IS NULL LIMIT $1 [["LIMIT", 1]]
(6.1ms) BEGIN At issuer_payout_rate data migration, could not find issuer 15668 to update

SQL (8.2ms) INSERT INTO "schema_migrations” ("version") VALUES ($1) RETURNI 1nsuranceFull::Issuer Load (8.1ms) SELECT "insurance_full_issuers".* FROM "insurance_full_issuers" WHERE "insurance_full_issuers"."hios_isst

(6.4ms) ALTER TABLE "off_ex_applications” ADD "canonical_id" character var

(0.1ms) COMMIT urance_full_issuers"”."id" ASC LIMIT $2 [["hios_issuer_id", "58326"], ["LIMIT", 1]]
Migrating to AddLastVerifiedAtToSbmAuth (20220322175536) State Load (0.1ms) SELECT "states".x FROM "states" WHERE "states"."short_name" IS NULL LIMIT $1 [["LIMIT", 1]]

(6.1ms) BEGIN At issuer_payout_rate data migration, could not find issuer 58326 to update
. e ot et N e e e e e e e e InsuranceFull:: Issuer Load (0.1ms) SELECT "insurance_full_issuers".* FROM "insurance_full_issuers" WHERE "insurance_full_issuers"."hios_issL
- 2::29322172533 Addt:stY:;t:tedAt;:S:llA:th: dll‘lt.g:::'l.l)\g ----------------------- urance_full_issuers"."id" ASC LIMIT $2 [["hios_issuer_id", "11269"], ["LIMIT", 1]]
-- add_column(:sbm_au e 5 —Ve: e ;a » -Gatetime oo State Load (0.1ms) SELECT "states".x FROM "states" WHERE "states"."short_name" IS NULL LIMIT $1 [["LIMIT", 1]]

(6.3ms) ALTER TABLE "sbm_auth" ADD "last_verified_at" timestamp At issuer_payout_rate data migration, could not find issuer 11269 to update

- 0.0100s InsuranceFull::Issuer Load (0.1ms) SELECT "insurance_full_issuers".x FROM "insurance_full_issuers" WHERE "insurance_full_issuers"."hios_issL
= 20220322175536 AddLastVerifiedAtToSbmAuth: migrated (0.8101s) ============= urance_full_issuers"."id" ASC LIMIT $2 [["hios_issuer_id", "54332"], ["LIMIT", 1]]

State Load (0.1ms) SELECT "states".*x FROM "states" WHERE "states"."short_name" IS NULL LIMIT $1 [["LIMIT", 1]]

SQL (0.3ms) INSERT INTO "schema_migrations" ("version") VALUES ($1) RETURNI At issuer_payout_rate data migration, could not find issuer 54332 to update
Co 1";) COMMIT = InsuranceFull:: Issuer Load (0.1ms) SELECT "insurance_full_issuers".x FROM "insurance_full_issuers" WHERE "insurance_full_issuers"."hios_issL

urance_full_issuers"."id" ASC LIMIT $2 [["hios_issuer_id", "60612"], ["LIMIT", 1]]

Migrating to ChangeEdeSyncQueuePersonTrackingNumbers (20228323221651) State Load (0.2ms) SELECT "states".* FROM "states" WHERE "states"."short_name" IS NULL LIMIT $1 [["LIMIT", 1]]
(6.1ms) BEGIN At issuer_payout_rate data migration, could not find issuer 60612 to update

= 20220323221651 ChangeEdeSyncQueuePersonTrackingNumbers: migrating ========= = 20220315161452 CreatelIssuerPayoutRates: migrated (0.2072s) ============z=z====
(6.1ms) set statement_timeout TO '30s’

_— change_t.ab'l.e(:ede_sync_queues) DataMigrate :: DataSchemaMigration Load (0.2ms) SELECT "data_migrations".* FROM "data_migrations"

(0.3ms) ALTER TABLE "ede_sync_queues” ALTER COLUMN "person_tracking_number S?:S:;znsgn":r:fERT INTO "data_migrations" ("version") VALUES ($1) RETURNING "version" [["version", "20220315161452"]]

[T INORIKS!

» Today you can run successfully (in about one minute):

rake db:create && \
rake db:migrate && \
rake data:migrate

» Next we should invest some time into making this work too:

rake db:seed

" HealthSherpa PostgreSOL Done Right - By Konstantin Gredeskoul CONFIDENTIAL Page

AFAVAILABILITY MIGRATIONS

James Coleman o + .))
Q’ Feb1,2019 - 14 minread - @ Listen T a > Read at hl‘tDS://blt.|y/Safe-mlgrahOnS

» Do not do any operations that requires exclusive
table lock

» ACCESS EXCLUSIVE: blocks all usage of the
locked table.

» SHARE ROW EXCLUSIVE: blocks concurrent
DDL against and row madification (allowing

PostgreSQL at Scale: Database Schema reads) in the locked table.

Changes Without Downtime

Braintree Payments uses PostgreSQL as its primary datastore. We rely heavily on > S H A R E U P DAT E EXC L U S I\I E: b | OC kS

the data safety and consistency guarantees a traditional relational database concurre nt D D L ag a| N St th e | 0C ke d t =) b | e.

offers us, but these guarantees come with certain operational difficulties. To
make things even more interesting, we allow zero scheduled functional

downtime for our main payments processing services. >

'I HealthSherpa PostgreSOL Done Right - By Konstantin Gredeskoul CONFIDENTIAL Page

1M N4 B T () I—

=YNE ’K
U U=y

Jl=ld L ; = } _

PERFORMANCE & LATENCY VS SCALABILITY

OR

, NETWORK,

b S

NS

2N

S THE CAPABILITY OF A SYSTEM

SN S
([
[

=

—
=
=
=
LLl
=
O
al
N
i
O
O
S5
- -
O
=
Ll
O
=
=
D
O
=
<
)
<
=
O
O
O
<
LLl
—
)
=
=
1
O
=
N
N
L]
-,
O
-
a

10 BE ENLARGED IN ORDER TO ACCOMMODATE THAT GROWTH.

SCALABILITY

9@ HealthSherpa

PERFORMANGE (INVERSELY PROPORTIONAL TO LATENCY): GENERALLY

DESCRIBES THE TIME ITTAKES FOR VARIOUS OPERATIONS TO COMPLETE: I.E.
USER INTERFACES TO LOAD, OR BACKGROUND JOBS TO COMPLETE.

9@ HealthSherpa

QUESTION:

IS IT NECESSARY TO INCREASE APPLICATION’S PERFORMANCE (OR
DECREASE IT’S LATENCY) IN ORDER TO INCREASE SCALABILITY?

9@ HealthSherpa Page

3 .

¢\' " lroll-_a

RIFORMANCE: REDUCING LATENCY

For high traffic backends (50K+ RPMs) a server latency of < 100ms or lower is
recommended for web applications running rails to contain cloud costs

For fast internal HTTP services, that wrap data-store — 5-10ms or lower

Web transactions response time ~ 149 ms 4.49s
APP SERVER ™ BROWSER

175 ms
150 ms

125 ms

100 ms postgresgl database
memcached

75 ms

MRI/Ruby/2.2/\VM

RailsiMiddleware

50 ms

25 ms

O
nginx/haproxy-requestiqueing ﬁyzlg,yGarbagNeO(z:sellectlon
11:50 PM 1:55 PM 12:00 AM 12:05 AM 12:10 AM

Request Queuing _ Ruby Memcached ActiveRecord - _

Graph credits: © NewRelic, Inc.

Z00M INTO SERVER LATENCY

Not all latency is born equal :)

Everyone should have seen a similar NewRelic graph by now...

\What colors are “CPU burn” versus “10 Wait"?

Web transactions response time ~ 149 ms 4.49
175 ms APP SERVER ™ BROWSER

150 ms

125 ms

100 ms postgresql database

memcached

75 ms

———

50 ms

25 ms

~Nov 26,
12:10 AM

Request Queuing Memcached ActiveRecord - _

Graph credits: © NewRelic, Inc.

Z00M INTO SERVER LATENCY

Internal Microservices, Solr, memcached, redis, database are waiting on 10

RubyVM, Middleware, GC are all CPU burn

CPU burn is easy to scale out by adding more app servers

Web transactions response time ~ 149 ms 4.49
175 ms APP SERVER ™ BROWSER

150 ms

125 ms

woms postgresql database
W

75 ms

50 ms

25 ms

Request Queuing

Graph credits: © NewRelic, Inc.

FOUNDATIONS
0F A MO

Ipu
—
—
J UL
==
=)
)
—]

ECTURE

- P._;’_ --;"i

g2 . '}

LY
— ._.,_:.,L‘ ~ _ AN

: L
. . h e)
- ; . £ v.".">.
. - B - £}) ’ . §
. - : Sty w7
4
N —— - v’, :
g I'
e — > -
— ‘ '. - ‘. > -
. L
\ 3 - o
) | ;.%,,F..._::-?,,-

BN

9@ HealthSherpa PostgreSOL Done Right - By Konstantin Gredeskoul “CONFIDENTIAL Page 22

| FOUNDATIONAL TECHNOLOGIES

programming language + framework (RoR)

app server (puma)

load balancer (haproxy + nginx)
database (postgresql)

hosting environment (we use AWS)
deployment tools (heroku / k8s)
server configuration tools (terraform)

many others, such as monitoring, alerting

9@ HealthSherpa PostgreSOL Done Right - By Konstantin Gredeskoul CONFIDENTIAL Page

LETS REVIEW — SUPER SIMPLE APP

Incoming N x Unicorns

PostgreSQL
http Ruby VM

Server

\

/var/pgsql/data

\4
/home/user/app/current/public

+ no redundancy, no caching (yet)
- can only process N concurrent requests
» nginx will serve static assets, deal with slow clients

» web sessions are probably in the cookie

9@ HealthSherpa PostgreSOL Done Right - By Konstantin Gredeskoul CONFIDENTIAL Page

DON'T SHOOT YOURSELF IN ThE FOOTY DO VRIS

Install 2+ memcached servers for caching and use

Dalli gem to connect to it for redundancy

e — e T
l l Switch to using cookie-based web sessions. Use
tokens for API. In general, use sessions sparingly,
‘ assume they are transient and short-lived.

® Redis is also an option for sessions, but it's not as easy to

. N x Unicorns
nginx-1—p- Ruby VM " >

l Y

/home/user/app/current/public

use two redis instances for redundancy, as easily as using

<y

Na—— memcached with Dalli. Plus, Redis is single-threaded, single

process, while memcached is multi-threaded, multi-
process.

9@ HealthSherpa PostgreSOL Done Right - By Konstantin Gredeskoul CONFIDENTIAL Page

ADD CACHING: CON AND MEMCACHED

— e
I — e

: N x Unicorns |
browser nginx |—p PostgreSQL
A7 Server

—— B

CDN /home/user/app/current/public
cache images, JS

geo distribute and cache your UGC and CS5/)S assets

cache html and serialize objects in memcached

can increase TTL to alleviate load, if traffic spikes

9@ HealthSherpa PostgreSOL Done Right - By Konstantin Gredeskoul CONFIDENTIAL Page

REMOVE SINGL

1

—]

M—

POINTS OF [FAILURE:

Multiple load balancers require DNS round robin
and short TTL (dnsmadeeasy.com)

Multiple long-running tasks (such as posting to
Facebook or Twitter) require background job
processing framework

Multiple app servers require haproxy between
nginx and unicorn

9@ HealthSherpa

PostgreSQL Done Right - By Konstantin Gredeskoul CONFIDENTIAL

Page

http://dnsmadeeasy.com

This architecture can horizontally scale Every other component can be scaled by

our as far the database at it's center adding more of it, to handle more traffic
incoming http Load Balancers
DNS round robin .

or failover / HA solution
| nginx App Servers Data stores Background Workers
| Transient to
: ¢ 2 Permanent B
|
; haproxy U;Jf)ilrséﬂiifnsee:%e)r [memcached] Sidekiq / Resque

‘ CDN i
cache images, JS
| [redis]

4

Object Store
User Generated

single DB

Content

PostgreSQL j

9@ HealthSherpa PostgreSOL Done Right - By Konstantin Gredeskoul CONFIDENTIAL Page

TRAFFIC CLIME 1S RELENTLESS

—

| WHAT ARE THE SYMPTOMS OF UNDER SCALING?

i Intermittent Outages

Pages and mobile views take forever to load and
render

Saving objects takes forever, sometimes times out

High level of user-dissatisftaction with the application
reliability

9@ HealthSherpa PostgreSQL Done Right - By Konstantin Gredeskoul CONFIDENTIAL Page 30

" FIRST SIGNS (OF READ SCALABILITY PROBLENS

o8 Pages load slowly or timeout
Users are getting 503 Service Unavailable
Database is slammed (very high CPU or read 10)

Some pages load (cached?), some don't

9@ HealthSherpa PostgreSQL Done Right - By Konstantin Gredeskoul CONFIDENTIAL S

™ FIRST SIGNS OF WRAITE SCALABILITY PROBLEMS

Database write 10 is maxed out, CPU is not
Updates are waiting on each other, piling up
Application “locks up’, timeouts

Replicas are not catching up”®

* More about replicas and how to observe them “catching up” is further down.

9@ HealthSherpa PostgreSQL Done Right - By Konstantin Gredeskoul CONFIDENTIAL Page 2

UTH SITUATIONS MAY

Requests response time ~

1250 ms

1000 ms |

750 ms

500 ms

250 ms

EASILY [

AESULT [N

199 ms 6.98s

Requests Browser

DBJatency)

RequesiQueuing

Oms

- Request Queuing . GC Execution

. Web external

) New Relic

Ruby | Database [} Memcache

DN TN

9@ HealthSherpa

PostgreSQL Done Right - By Konstantin Gredeskoul

CONFIDENTIAL

Page

SCALING UP
LETS GEU TRE BASICS RIGHT FIRST: <%
NG 101 (T

[

)

(

- d -._'.'\'J

G e .

- S
- —— -
. Y b
N, s - o
— . -y ‘ - ‘ . - ~ -,' "’ - .»‘. = -
e ———— T —— Y) = - ~
= , f i‘i.:,f;e\-;.‘a
U =

RS

9@ HealthSherpa PostgreSOL Done Right - By Konstantin Gredeskoul COTFIDENTIAL -

e =, - $
. a2 (3
L T 7""&'\4 1
“"’-'on‘ j;-&
iv. f: 41?{‘ "<
2ty 0 |
RPN .
oF ¥ g
bt SRR
43 L |~ A J
L ¥ Bl "\‘ n
el
Vn-__?
e 31
o i
g
N
r
- "
.!'l
L0
)
22
Bl
8% |
L -
& TS ¢
P - "‘.I
$a%% T [
‘\-‘A : ;1 ', 3
ah

Anything that can be cached, should be cached
Cache hit = many database hits avoided

Hit rate of 17% still saves DB hits

We can cache many types of things...

Cache is cheap and fast (memcached)

9@ HealthSherpa PostgreSOL Done Right - By Konstantin Gredeskoul CONFIDENTIAL Page 35

TR
y By - --5‘)‘
I T g
R, S

ppfes L

| CACHE MANY TYPES OF THINGS
;ﬁf git clone https://github.com/wanelo/compositor
| git clone https://github.com/wanelo/cache-object

caches_action in controllers is very effective

fragment caches of reusable widgets

we use gem Compositor for JSON API.

We cache serialized object fragments, grab them from

memcached using multi_get and merge them

Our gem “CacheObject” provides very simple and clever layer

within Ruby on Rails framework.

9@ HealthSherpa PostgreSOL Done Right - By Konstantin Gredeskoul CONFIDENTIAL Page

https://github.com/wanelo/compositor
https://github.com/wanelo/cache-object

AJAXIFY: DO THIS EARLY, HARD TO ADD LATER

Personalization via AJAX, so controller actions can be cached entirely
using caches_action

Page returned unpersonalized, additional AJAX request loads
personalization

00 /= 2 \G
. / Wanelo - Want, Need, Love \ |

€ - C' | [} wanelo.com/trending

WANE MY FEED TRENDING

Find products, stores and people

Profile

Women

Find Your Friends

Get the Bookmarklet

Sefttings

EE

UT EXPIRING CACKE IS NOT ALWAYS EASY

Easiest way to expire cache is to walit for it to expire
(by setting a TTL ahead of time). But that's not always
possible (ie. sometimes an action requires wiping the
cache, and it's not acceptable to wait)

CacheSweepers in Rails help

Can and should expiring caches in background jobs as
it might take time.

Can cache pages, fragments and JSON using CDN also!

9@ HealthSherpa PostgreSOL Done Right - By Konstantin Gredeskoul CONFIDENTIAL Page

FIN

CDVK' f

) NN] B

DN

SLO

9@ HealthSherpa

N—/

SIL

K .‘-(' : p— '\‘;{_{:‘
r‘ﬂ e e r-;.'?:ﬂ 5
' ’rc,* — . !‘

s) 0%

L
W ““;‘L‘ S A

PostgreSQL Done Right - By Konstantin Gredeskoul

Page 39

SUL OPTIMIZATION: WOG SLOW QUERIES

Find slow SQL (>100ms) and either remove it, cache
the hell out of it, or fix/rewrite the query

Enable slow query log in postgresqgl.conf (as well as

locks, and temp files). These are of the types of
things you need to know about.

log min_duration_statement = 80

log lock _waits
log temp files

9@ HealthSherpa PostgreSOL Done Right - By Konstantin Gredeskoul CONFIDENTIAL Page

statements executed by a server.

The module must be loaded by adding pg_stat_statements to shared_preload _libraries in
postgresql.conf, because it requires additional shared memory. This means that a server restart is

9@ HealthSherpa

shared_preload_libraries =

TRACKING MOST TIME CONSUMING SOIL

The pg_stat_statements module provides a means for tracking execution statistics of all SQL

create extension pg_stat_statements;

select query, calls, total_time, rows

from pg_stat_statements
order by total_time desc limit

a
)

By Konstantin Gredeskoul

CONFIDENTIAL

Page

FXING SLOW OUER

pg stat user_ tables

Run explain plan to understand how DB runs the query using
(postgres@[local]:5432) [production] > \d pg stat_user_tables

view "pg catalog.pg stat user tables" ”explain analyze <quer'y>".

Column | Type

e Are there adequate indexes for the query? Is the database using

schemaname
relname
seq_scan
seq_tup_read
idx_scan
idx_tup_ fetch
n_tup_ins
n_tup_upd
n_tup_del bigint

n_tup_hot_upd bigint Can a column being sorted on be added to the index?

| oid
|
|
|
|
|
|
|
|
|
|
n_live tup | bigint
|
|
|
|
|
|
|
|
|
|

nane appropriate index? Has the table been recently analyzed?
bigint

gt Can a complex join be simplified into a subselect?

bigint

O Can this query use an index-only scan?
gin

n_dead_tup bigint

n_mod_since_analyze | bigint What can we learn from watching the data in the two tables
last_vacuum timestamp with time

last_autovacuum timestamp with time pg stat user_tables and pg stat user_indexes?
last_analyze timestamp with time _ - _ _ - _

last_autoanalyze timestamp with time

vacuum_count bigint We could discover that the application is doing many sequential scans, has
autovacuum_count bigint
analyze_count bigint
autoanalyze_count bigint more.

several unused indexes, that take up space and slow down “inserts” and much

" HealthSherpa By Konstantin Gredeskoul CONFIDENTIAL Page

9@ HealthSherpa

-

PostgreSQL Done Right - By Konstantin Gredeskoul

— __.__:.u,‘ . A

NFIDENTIAL

Page 43

9@ HealthSherpa

local®.
local®.
local®.
local®.
local®.
local®.
local®.
local®.
local®.
local®.
local®.
local®.
local®.
local®.
local®.
local®.
local®.
local@.
local®.
local@.
local®.
local@.

DAY, [NOTIC

[158-1]
[158-2]
[159-1]
[159-2]
[160-1]
[160-2]
[161-1]
[161-2]
[162-1]
[162-2]
[163-1]
[163-2]
[164-1]
[363-1]
[363-2]
[364-1]
[364-2]
[365-1]
[365-2]
[366-1]
[366-2]
[367-1]

=0 0TS OF T

LOG: temporary file:
STATEMENT: SELECT
LOG: temporary file:
STATEMENT: SELECT
LOG: temporary file:
STATEMENT: SELECT
LOG: temporary file:
STATEMENT: SELECT
LOG: temporary file:
STATEMENT: SELECT
LOG: temporary file:
STATEMENT: SELECT

LOG: duration: 1035.115 ms statement: SELECT
path "base/pgsql_tmp/pgsql_tmp88970.
"stories".* FROM "stories" inner join
path "base/pgsql_tmp/pgsql_tmp88970.
"stories".* FROM "stories" inner join
path "base/pgsql_tmp/pgsql_tmp88970.
"stories".* FROM "stories” inner join
path "base/pgsql_tmp/pgsql_tmp88970.
"stories".* FROM "stories" inner join
LOG: duration: 1007.687 ms statement: SELECT

LOG: temporary file:
STATEMENT: SELECT
LOG: temporary file:
STATEMENT: SELECT
LOG: temporary file:
STATEMENT: SELECT
LOG: temporary file:
STATEMENT: SELECT

WMIP [FIL

L

S created in the postgres.log

path "base/pgsql_tmp/pgsql_tmp3098.30", size 49812156
"stories”.* FROM "stories"” inner join follows on stories.user_id
path "base/pgsql_tmp/pgsql_tmp3098.33", size 24

"stories”.* FROM "stories"” inner join follows on stories.user_id
path "base/pgsql_tmp/pgsql_tmp3098.29", size 50575883
"stories”.* FROM "stories"” inner join follows on stories.user_id
path "base/pgsql_tmp/pgsql_tmp3098.34", size 24

"stories”.* FROM "stories” inner join follows on stories.user_id
path "base/pgsql_tmp/pgsql_tmp3098.31", size 50184352
"stories”.* FROM "stories"” inner join follows on stories.user_id
path "base/pgsql_tmp/pgsql_tmp3098.32", size 96

"stories”.* FROM "stories” inner join follows on stories.user_id
"stories".* FROM "stories" inner join follows o
176", size
follows on
178", size
follows on
175", size
follows on
177", size
follows on
"stories”.* FROM "stories” inner join follows o

49812156
stories.user_id
24
stories.user_id
50575883
stories.user_id
50184352
stories.user_id

follows.

follows.

follows.

follows.

follows.

follows.

follows.

follows.

follows.

follows.

Page

EIS RUN THIS QUERY...

1

2 SELECT stories.*

3 FROM stories inner join follows on stories,
4 WHERE follows.user_id = ¢

5 ORDER BY stories.created_at desc
o LIMIT 0

>

8 (2 rows)

9 Time: 1034,

19

11

This join takes a whole second to return :(

9@ HealthSherpa Page

FOLLOWS TABLE... STURIES TABLE...

> \d follows > \d stories
Table "public.stories"
Table "public.follows" Column | Type |
Column l Type I
id integer id | integer I
user_id integer user_id | integer I
followee_type | character varying(20) body | text I
followee_1id integer state | character varying(32) I
created_at timestamp without time zone
Indexes: Indexes:
GRS CE il I LA el G Qe ,, "stories_pkey" PRIMARY KEY, btree (id)
Lndex_follows_on_followee_id_and_fol Lowee_type_and_created_at] : : E
btree (followee_id, followee_type, created_at DESC) 1ndex_stor‘Ies_on_user’_ld_created_at btree
"index_follows_on_user_id_and_followee_id_and_followee_type" (user_id, created_at DESC)
btree (user_id, followee_id, followee_type) WHERE state::text = "active’::text

9@ HealthSherpa

27

28 > \d follows > \d stories

29 Table "public.stories”

30 Table "public.follows" Column | Type

31 Column I Type I

32 . .

33 id | integer | id | integer

34 user_id | integer I user_id | integer

35 followee_type | character varying(20) I body | text

36 followee_id | integer I state | character varying(32)
37 created_at | timestamp without time zone |

38 Indexes: Indexes:

39 "follows_pkey" PRIMARY KEY, btree (id) " : " .

40 ”index_follois_on_?ollowee:id_and_followee_type_and_created_at" "gtorles_pkgy LS '_(EY’ btree (ld)
41 btree (followee_id, followee_type, created_at DESC) 1ndex_stor‘Ies_on_user_ld_cr‘eated_at btree
42 "index_follows_on_user_id_and_followee_id_and_followee_type" | (user_id, created_at DESC)

43 btree (user_id, followee_id, followee_type) WHERE state::text = 'active'::text

44

So our index is partial, only on state = ‘active’

But the state column isn't used in the query at all' Perhaps it's a bug?

Regardless of whether this was intentional, the join results is a full table scan (called
“sequential scan”).

Sequential scan on a large table, in a database used by an OLTP application, is bad,
because it “steals” the database cache from many other queries, because OS will now
load these pages into the memory.

9@ HealthSherpa Page

FXNG [T LETS ADD STATE = "ACTIVE®

't was meant to be there anyway :)

| SELECT stories.*
FROM stories inner join follows on

WHERE : &
state = "active’
ORDER BY ; decc *——
’

LIMIT

[
S LOLoo~NOYTWUTPH WN B

(9 rows)

Time: 3.045 ms Now query takes 3ms instead of 1000ms,

=
N =

and the IO on the server drops significantly
according to this NewRelic graph:

/ (609bic29) no more temp files

/O utilization Writes Reads

" HealthSherpa By Konstantin Gredeskoul CONFIDENTIAL Page

L

AE IS A LOT MORE

Part Il of this presentation talks about:

» Setting up and using read replicas » Buffering updates to popular rows such as
updating rails counters

» (hoosing adequate hardware and tuning it
» Schema tricks for high scale

» Moving high-throughput tables out of the
database, eg event collection » \/ertical sharding

» Tuning PostgreSQL & File System » Horizontal sharding & microservices

" HealthSherpa PostgreSOL Done Right - By Konstantin Gredeskoul CONFIDENTIAL Page

Thanks!

Blog: i
» https:/kig.re

Music:

» https:/soundcloud.com/leftctrl twitter.com/kig

» https:/soundcloud.com/polygroovers sithub.com/kigster

linkedin.com/in/kigster
slideshare.net/kigster

https://soundcloud.com/leftctrl
https://soundcloud.com/polygroovers
http://linkedin.com/in/kigster
http://slideshare.net/kigster

