
POSTGRESQL DONE RIGHT

RAILS MIGRATIONS
SCALING VS PERFORMANCE
LATENCY — IO VS CPU BURN
UNDERSTANDING POSTGRESQL STATISTICS
OPTIMIZING SCHEMA AND QUERIES

@kigster @kig

By Konstantin Gredeskoul

CONFIDENTIALPostgreSQL Done Right • By Konstantin Gredeskoul

WHY SHOULD YOU LISTEN TO ME?

➤ I have been using PostgreSQL since
2004 (version 7.4)

➤ In 2012 my team scaled wanelo.com to
serve 8,000 rack requests per second.

➤ This equals to about 100K PostgreSQL
transactions per second (!!!)

➤ In 2014 I spoke at SF PG User Group
(PUG) about how we scaled Wanelo
Slides: h"ps://bit.ly/scaling-pg

http://wanelo.com
https://bit.ly/scaling-pg

RAILS MIGRATIONS DONE RIGHT

Page CONFIDENTIALPostgreSQL Done Right • By Konstantin Gredeskoul 4

BEST PRACTICES FOR RAILS MIGRATIONS
➤ Avoid modifying data in schema

migrations
➤ Rails guide says:

➤ There is no word "data" anywhere...
➤ Nor there is a mention of Rails Models.

MIGRATIONS ARE A FEATURE OF ACTIVE RECORD THAT ALLOWS YOU TO EVOLVE
YOUR DATABASE SCHEMA OVER TIME. RATHER THAN WRITE SCHEMA MODIFICATIONS
IN PURE SQL, MIGRATIONS ALLOW YOU TO USE AN EASY RUBY DSL TO DESCRIBE
CHANGES TO YOUR TABLES.

Page CONFIDENTIALPostgreSQL Done Right • By Konstantin Gredeskoul 5

BEST PRACTICES FOR RAILS MIGRATIONS (CTD.)

➤ We have "data_migrate" gem specifically for the
purposes of data migrations, although for long-
running migrations it's better to write rake tasks and
execute them interactively.

➤ Whether using schema or data migrations, avoid
using model classes.

➤ Using things like this is discouraged:

 User.create!(...)

Page CONFIDENTIALPostgreSQL Done Right • By Konstantin Gredeskoul

PROP

WHY IS IT CONSIDERED A POOR PRACTICE TO
LEVERAGE ACTIVE RECORD SUBCLASSES IN

MIGRATIONS?

Page CONFIDENTIALPostgreSQL Done Right • By Konstantin Gredeskoul

PROP

AN EXAMPLE FROM THE REPO
#	db/migrate/20131217214153_move_agent_state_license_column_to_agent_licenses.rb	
class	MoveAgentStateLicenseColumnToAgentLicenses	<	ActiveRecord::Migration	
		class	Agent	<	ApplicationRecord	
		end	

		def	up	
				Agent.all.each	do	|agent|	
						license	=	AgentLicense.new(:agent	=>	agent,	
																																	:state	=>	agent.state,	
																																	:license_number	=>	agent.state_license)	
						license.save!	
				end	

				remove_column	:agents,	:state_id	
				remove_column	:agents,	:state_license	
				Agent.reset_column_information	
		end	

		def	down	
				#	removed	for	brevity	
		end	
end	

HOUSTON, WE HAVE A PROBLEM

Page CONFIDENTIALPostgreSQL Done Right • By Konstantin Gredeskoul 8

BEST PRACTICES FOR RAILS MIGRATIONS (CTD.)

➤ Why is this line a problem?

 						license.save!

➤ To answer this we should review how the migrations are used
throughout the life of the project.

➤ One of the fundamental expectations of any rails project is that this
command can create and migrate the database to current point:

 rake	db:create	&&	rake	db:migrate

HOUSTON, WE HAVE A PROBLEM

Page CONFIDENTIALPostgreSQL Done Right • By Konstantin Gredeskoul

PROP

WHY CAN'T WE USE MODELS IN MIGRATIONS?
➤ Because migrations should be "frozen in

time" and be able to build your schema by
applying incremental updates to the
database.

➤ However, model classes are constantly
changing. New validations are added.

➤ Old migration will not know of any such
changes, and when attempting to save a
model, a recently added validation may
cause it to fail.

AS A RESULT,
DB:MIGRATE RAKE

TASK NO LONGER
WORKS.

Page CONFIDENTIALPostgreSQL Done Right • By Konstantin Gredeskoul

WHERE IS EXCHANGE-COMPARE TODAY?

➤ When I joined the company I was unable to run

 rake	db:migrate

successfully.

➤ Today — it works! Likely due to fixes to migrations
and Rails 5 upgrade. Yay!

➤ Proof! (demo)

Page CONFIDENTIALPostgreSQL Done Right • By Konstantin Gredeskoul

IT WQRKS!

➤ Today you can run successfully (in about one minute):

rake	db:create	&&	\	
rake	db:migrate	&&	\	
rake	data:migrate	

	
➤ Next we should invest some time into making this work too:

rake	db:seed	

	

Page CONFIDENTIALPostgreSQL Done Right • By Konstantin Gredeskoul

HI-AVAILABILITY MIGRATIONS

➤ Read at h"ps://bit.ly/safe-migra6ons

➤ Do not do any operations that requires exclusive
table lock

➤ ACCESS EXCLUSIVE: blocks all usage of the
locked table.

➤ SHARE ROW EXCLUSIVE: blocks concurrent
DDL against and row modification (allowing
reads) in the locked table.

➤ SHARE UPDATE EXCLUSIVE: blocks
concurrent DDL against the locked table.

➤

SCALABILITY IN CONTEXT
PERFORMANCE & LATENCY VS SCALABILITY

Page CONFIDENTIALPostgreSQL Done Right • By Konstantin Gredeskoul

PROP

SCALABILITY: IS THE CAPABILITY OF A SYSTEM, NETWORK, OR
PROCESS TO HANDLE A GROWING AMOUNT OF WORK, OR ITS POTENTIAL
TO BE ENLARGED IN ORDER TO ACCOMMODATE THAT GROWTH.

Page CONFIDENTIALPostgreSQL Done Right • By Konstantin Gredeskoul

PROP

PERFORMANCE (INVERSELY PROPORTIONAL TO LATENCY): GENERALLY
DESCRIBES THE TIME IT TAKES FOR VARIOUS OPERATIONS TO COMPLETE: I.E.
USER INTERFACES TO LOAD, OR BACKGROUND JOBS TO COMPLETE.

Page CONFIDENTIALPostgreSQL Done Right • By Konstantin Gredeskoul

PROP

QUESTION:

IS IT NECESSARY TO INCREASE APPLICATION’S PERFORMANCE (OR
DECREASE IT’S LATENCY) IN ORDER TO INCREASE SCALABILITY?

NO.

BUILDING WEB APPS THAT SCALE

PROP

PERFORMANCE: REDUCING LATENCY
• For high traffic backends (50K+ RPMs) a server latency of < 100ms or lower is

recommended for web applications running rails to contain cloud costs

• For fast internal HTTP services, that wrap data-store – 5-10ms or lower

Graph credits: © NewRelic, Inc.

PROP

• Not all latency is born equal :)

• Everyone should have seen a similar NewRelic graph by now...

• What colors are “CPU burn”, versus “IO Wait”?

ZOOM INTO SERVER LATENCY

Graph credits: © NewRelic, Inc.

PROP

• Internal Microservices, Solr, memcached, redis, database are waiting on IO

• RubyVM, Middleware, GC are all CPU burn

• CPU burn is easy to scale out by adding more app servers

ZOOM INTO SERVER LATENCY

Graph credits: © NewRelic, Inc.

Page CONFIDENTIALPostgreSQL Done Right • By Konstantin Gredeskoul

PROP
22

OF A MODERN WEB ARCHITECTURE
FOUNDATIONS

Page CONFIDENTIALPostgreSQL Done Right • By Konstantin Gredeskoul

PROP

• app server (puma)

• load balancer (haproxy + nginx)

• database (postgresql)

• hosting environment (we use AWS)

• deployment tools (heroku / k8s)

• server configuration tools (terraform)

• programming language + framework (RoR)

• many others, such as monitoring, alerting

FOUNDATIONAL TECHNOLOGIES

Page CONFIDENTIALPostgreSQL Done Right • By Konstantin Gredeskoul

LET’S REVIEW – SUPER SIMPLE APP

/var/pgsql/data

incoming
http

PostgreSQL
Server

/home/user/app/current/public

nginx Unicorn / Passenger
Ruby VM

N x Unicorns
Ruby VM

• no redundancy, no caching (yet)

• can only process N concurrent requests

• nginx will serve static assets, deal with slow clients

• web sessions are probably in the cookie

Page CONFIDENTIALPostgreSQL Done Right • By Konstantin Gredeskoul

• Install 2+ memcached servers for caching and use
Dalli gem to connect to it for redundancy

• Switch to using cookie-based web sessions. Use
tokens for API. In general, use sessions sparingly,
assume they are transient and short-lived.

• Redis is also an option for sessions, but it’s not as easy to
use two redis instances for redundancy, as easily as using
memcached with Dalli. Plus, Redis is single-threaded, single
process, while memcached is multi-threaded, multi-
process.

PROP

DON’T SHOOT YOURSELF IN THE FOOT! DO THIS.

/var/pgsql/data

incoming
http

PostgreSQL
Server

/home/user/app/current/public

nginx Unicorn / Passenger
Ruby VM

N x Unicorns
Ruby VM

browser PostgreSQL
Server

/home/user/app/current/public

nginx Unicorn / Passenger
Ruby VM

N x Unicorns
Ruby VM

memcachedCDN
cache images, JS

⬇

Page CONFIDENTIALPostgreSQL Done Right • By Konstantin Gredeskoul

PROP

browser PostgreSQL
Server

/home/user/app/current/public

nginx Unicorn / Passenger
Ruby VM

N x Unicorns
Ruby VM

memcachedCDN
cache images, JS

ADD CACHING: CDN AND MEMCACHED

• geo distribute and cache your UGC and CSS/JS assets

• cache html and serialize objects in memcached

• can increase TTL to alleviate load, if traffic spikes

Page CONFIDENTIALPostgreSQL Done Right • By Konstantin Gredeskoul

PROP

REMOVE SINGLE POINTS OF FAILURE:

• Multiple load balancers require DNS round robin
and short TTL (dnsmadeeasy.com)

• Multiple long-running tasks (such as posting to
Facebook or Twitter) require background job
processing framework

• Multiple app servers require haproxy between
nginx and unicorn

http://dnsmadeeasy.com

Page CONFIDENTIALPostgreSQL Done Right • By Konstantin Gredeskoul

PROP

• This architecture can horizontally scale
our as far the database at it’s center

• Every other component can be scaled by
adding more of it, to handle more traffic

PostgreSQL

Unicorn / Passenger
Ruby VM (times N)

haproxy

incoming http
DNS round robin

or failover / HA solution
nginx

memcached

redis

CDN
cache images, JS

Load Balancers

App Servers

single DB
Object Store

User Generated
Content

Sidekiq / Resque

Background WorkersData stores
Transient to
Permanent

Page CONFIDENTIALPostgreSQL Done Right • By Konstantin Gredeskoul

TRAFFIC CLIMB IS RELENTLESS
And it keeps climbing, sending our servers into a tailspin…

Page CONFIDENTIALPostgreSQL Done Right • By Konstantin Gredeskoul

PROP

• Intermittent Outages

• Pages and mobile views take forever to load and
render

• Saving objects takes forever, sometimes times out

• High level of user-dissatisfaction with the application
reliability

30

WHAT ARE THE SYMPTOMS OF UNDER SCALING?

Page CONFIDENTIALPostgreSQL Done Right • By Konstantin Gredeskoul

PROP

• Pages load slowly or timeout

• Users are getting 503 Service Unavailable

• Database is slammed (very high CPU or read IO)

• Some pages load (cached?), some don’t

31

FIRST SIGNS OF READ SCALABILITY PROBLEMS

Page CONFIDENTIALPostgreSQL Done Right • By Konstantin Gredeskoul

PROP

• Database write IO is maxed out, CPU is not

• Updates are waiting on each other, piling up

• Application “locks up”, timeouts

• Replicas are not catching up*

32

FIRST SIGNS OF WRITE SCALABILITY PROBLEMS

* More about replicas and how to observe them “catching up” is further down.

Page CONFIDENTIALPostgreSQL Done Right • By Konstantin Gredeskoul

BOTH SITUATIONS MAY EASILY RESULT IN DOWNTIME

Page CONFIDENTIALPostgreSQL Done Right • By Konstantin Gredeskoul

PROP
34

LETS GET THE BASICS RIGHT FIRST:
CACHING 101

SCALING UP

Page CONFIDENTIALPostgreSQL Done Right • By Konstantin Gredeskoul

PROP

• Anything that can be cached, should be cached

• Cache hit = many database hits avoided

• Hit rate of 17% still saves DB hits

• We can cache many types of things…

• Cache is cheap and fast (memcached)

35

CACHING 101

Page CONFIDENTIALPostgreSQL Done Right • By Konstantin Gredeskoul

CACHE MANY TYPES OF THINGS

• caches_action in controllers is very effective

• fragment caches of reusable widgets

• we use gem Compositor for JSON API.

• We cache serialized object fragments, grab them from
memcached using multi_get and merge them

• Our gem “CacheObject” provides very simple and clever layer
within Ruby on Rails framework.

git	clone	https://github.com/wanelo/compositor	
git	clone	https://github.com/wanelo/cache-object

https://github.com/wanelo/compositor
https://github.com/wanelo/cache-object

Page CONFIDENTIALPostgreSQL Done Right • By Konstantin Gredeskoul

AJAXIFY: DO THIS EARLY, HARD TO ADD LATER.

PROP

• Personalization via AJAX, so controller actions can be cached entirely
using caches_action

• Page returned unpersonalized, additional AJAX request loads
personalization

Page CONFIDENTIALPostgreSQL Done Right • By Konstantin Gredeskoul

BUT EXPIRING CACHE IS NOT ALWAYS EASY

• Easiest way to expire cache is to wait for it to expire
(by setting a TTL ahead of time). But that’s not always
possible (ie. sometimes an action requires wiping the
cache, and it’s not acceptable to wait)

• CacheSweepers in Rails help

• Can and should expiring caches in background jobs as
it might take time.

• Can cache pages, fragments and JSON using CDN also!

Page CONFIDENTIALPostgreSQL Done Right • By Konstantin Gredeskoul

PROP
39

FINDING SLOW SQL
SCALING UP

Page CONFIDENTIALPostgreSQL Done Right • By Konstantin Gredeskoul

SQL OPTIMIZATION: LOG SLOW QUERIES

• Find slow SQL (>100ms) and either remove it, cache
the hell out of it, or fix/rewrite the query

• Enable slow query log in postgresql.conf (as well as
locks, and temp files). These are of the types of
things you need to know about.

Page CONFIDENTIALPostgreSQL Done Right • By Konstantin Gredeskoul

TRACKING MOST TIME CONSUMING SQL
• The pg_stat_statements module provides a means for tracking execution statistics of all SQL

statements executed by a server.

• The module must be loaded by adding pg_stat_statements to shared_preload_libraries in
postgresql.conf, because it requires additional shared memory. This means that a server restart is

Page CONFIDENTIALPostgreSQL Done Right • By Konstantin Gredeskoul

FIXING SLOW QUERY:

PROP

• Run explain plan to understand how DB runs the query using
“explain	analyze	<query>”.

• Are there adequate indexes for the query? Is the database using
appropriate index? Has the table been recently analyzed?

• Can a complex join be simplified into a subselect?

• Can this query use an index-only scan?

• Can a column being sorted on be added to the index?

• What can we learn from watching the data in the two tables
pg_stat_user_tables and pg_stat_user_indexes?

• We could discover that the application is doing many sequential scans, has
several unused indexes, that take up space and slow down “inserts” and much
more.

pg_stat_user_tables

Page CONFIDENTIALPostgreSQL Done Right • By Konstantin Gredeskoul

PROP
43

FIXING SLOW SQL
AN EXAMPLE

Page CONFIDENTIALPostgreSQL Done Right • By Konstantin Gredeskoul

PROP

ONE DAY, I NOTICED LOTS OF TEMP FILES created in the postgres.log

Page CONFIDENTIALPostgreSQL Done Right • By Konstantin Gredeskoul

PROP

LET’S RUN THIS QUERY…

This join takes a whole second to return :(

Page CONFIDENTIALPostgreSQL Done Right • By Konstantin Gredeskoul

PROP

FOLLOWS TABLE… STORIES TABLE…

Page CONFIDENTIALPostgreSQL Done Right • By Konstantin Gredeskoul

PROP

So our index is partial, only on state = ‘active’

Regardless of whether this was intentional, the join results is a full table scan (called
“sequential scan”).

But the state column isn’t used in the query at all! Perhaps it’s a bug?

Sequential scan on a large table, in a database used by an OLTP application, is bad,
because it “steals” the database cache from many other queries, because OS will now
load these pages into the memory.

Page CONFIDENTIALPostgreSQL Done Right • By Konstantin Gredeskoul

PROP

Now query takes 3ms instead of 1000ms,
and the IO on the server drops significantly
according to this NewRelic graph:

It was meant to be there anyway :)

FIXING IT: LETS ADD STATE = “ACTIVE”

Page CONFIDENTIALPostgreSQL Done Right • By Konstantin Gredeskoul

THERE IS A LOT MORE...

Part II of this presentation talks about:

➤ Setting up and using read replicas

➤ Choosing adequate hardware and tuning it

➤ Moving high-throughput tables out of the
database, eg event collection

➤ Tuning PostgreSQL & File System

➤ Buffering updates to popular rows such as
updating rails counters

➤ Schema tricks for high scale

➤ Vertical sharding

➤ Horizontal sharding & microservices

Thanks!

Blog:
 • https://kig.re
 Music: • https://soundcloud.com/leftctrl
 • https://soundcloud.com/polygroovers

twitter.com/kig
github.com/kigster

linkedin.com/in/kigster
slideshare.net/kigster

https://soundcloud.com/leftctrl
https://soundcloud.com/polygroovers
http://linkedin.com/in/kigster
http://slideshare.net/kigster

