244

\
S
\
N
N
\
N\
N
\
N
S
N
N
\
Y
S
\
\
\

for HealthSherpa
V

/
4
’
/’
’
’
/s’
’
’
/’
’
s’
/’
’
s’
/
7
’

PARALLEL (; PROCESSING

%) ly Konstantin Gredeskoul' b7 |:

PARALLEL M

PROCESSING

Who am I and

E
=3

§hould you care?

\.

J

(

o
'3
o

0.'0

| /

o

0
D

—
e

et

S
S

I've wrltten p ode since 2007.

.._...

4 : Y
9%
w ucf
< <} ((/‘ "~’
(() 'j'

D
= 0999
’9

7

R puibl s

«~

J{. -
:(':

-
4.
U

4

, Ruby Gems.

A
N 5

<
L
(.
o9

N vvv\.«v\z\/\/\/\/vv NN
\/V\/\/\/\/\/‘\/\/ S N

B N W N W P W D

They've been downloaded about 20 OOO 000 times total.

- - - » s - — - - - - - - - e Rt D N V0 N NS N

| spoke at RubyConf in 2015.
My presentations have been viewed by over 200,000 people.
| sometimes switch to Ruby in a social conversation.

But mostly, because | love to spread Ruby Luv, and NOT Coronavirus.

LET'S START YOU UP WITH A
SHORT SELF-TEST
OF HOW WELL YOU UNDERSTAND
RUBY'S CONCURRENCY MODEL BEFORE THE TALK.

QUESTION:
T0 FULLY UTILIZE ALL AVAILABLE CORES ON A
MULTI-CORE SERVER, WE SHOULD...

A) RUN ONE RUBY PROCESS WITH MANY THREADS

B) RUN SEVERAL SINGLE-THREADED RUBY PROCESSES

C) RUN AS MANY RUBY PROGESSES AS THE NUMBER OF CPU CORES AVAILABLE
D) RUN ONE RUBY PROCESS THAT FORKS THOUSANDS OF WORKERS

WHAT SHOULD YOU TAKE AWAY FROM THIS TALK?

1. You'll learn where 1t Is 3. How to determine the optimal
appropriate to use Threads in number of threads per process.
MRI Ruby applications and
b 4. List of tools that are available to

you in addition to the raw Thread

2. Likewise, when is it class
appropriate to use multiple
Ruby Processes, how many
should you start, and how?

9. And finally, how to write thread-
safe code and detect unsafe code.

EXAMPLE 1.

Joe Armstrong - “Erlang and other stuff’

(cmcuN\Q-t)C = | We quu&g O e C“Qe& ﬁqcﬁ\‘\

CONCURRENT:
TWO QUEUES AND ONE COFFEE

PARALLEL:
TWO QUEUES AND TWO COFFEE

@® e Lo Vu-e‘r.ua sols

GCONGCURRENCY

CAN HAPPEN WHEN THERE IS ONLY ONE CORE — CONCURRENCY IS ABOUT
DESIGN — IMPROVED PERFORMANCGE IS A SIDE EFFECT

PARALLELISM

REQUIRES TWO PROCESSOR CORES — NO MATTER THE LANGUAGE/RUNTIME -
A PROCGESSOR CORE CAN ONLY EXECUTE ONE INSTRUCTION AT A TIME

CONGURRENT
RUBY THREADS, FIBERS, CELLULOID, GUILD (RUBY 3.0)

PARALLEL
0S PROCESSES: UNICORN WORKERS, SIDEKIQ WORKERS

CONCURRENCY VS PARALLELISM

MULTITHREADING IN THE UNIX 0S

> UNIX 0S manages threads > No programming language can
of execution across all preempt an operating system
running processes context switch.

> When the operating system > You can monitor the number of
pauses the execution of context switches per process
one thread to resume using system tools, such as:
execution of another, it's
called a “context switch” dtrace, latency, fs_usage

Critically, each core can only run one thread at a time 2

Rt A
A A AR AAUAUAUALA AL AA,
f L P4

- W \»_\ N j ;A\. o ‘»\? N
) | o
A i&’t-""\ R N

q R y f
A et ~~aage
< s ,_. ' S N 4 ~

GLOBAL INTERPRETER LOCK
bIL

WHAT IS THIS "GLOBAL INTERPRETER LOCK™?

» Every programming language/runtime must have internal
logic to deal with operating system context switches and
across its own concurrency constructs

» Some languages run one thread per processor and handle
context switching internally

» Other languages let the operating system manage all
concurrency and context switching

FACT.

RUBY USES THE GIL TO PROTECT ITS INTERNAL STATE ACROSS 0S
CONTEXT SWITCHES

IMPLICATIONS OF “GIL" IN PRACTICE

» Only one “unit” of Ruby code can execute at any given time -
although there may be multiple threads and multiple
processors, executing code will regularly be blocked by the GIL

» When given multiple cores MRI Ruby is unable to experience
true parallelism (this is not the case with jJRuby and Rubinius)

» The Ruby runtime guarantees that it will always be in a
consistent internal state — but it makes no guarantees about
your code

LET'S LOOK AT A COUPLE OF EXAMPLES 10
DIG A BIT DEEPER INTO GIL'S
IMPLICATIONS....

T0 USE CONCURRENCY OR NOT TO USE? THAT IS THE QUESTION.
ASSUMING MRI RUBY...

EXAMPLE 1: COMPUTE CHECKSUMS # EXAMPLE 2: LOAD REMOTE URL
require 'open-uri'

require 'digest/md5’
10.times.map do

10.times.map do Thread.new do
Thread.new do open('http://zombo.com')
Digest::MD5.hexdigest(rand) end
end end.each(&:value)

end.each(&:value)

EXAMPLE 1: COMPUTING CHECKSUMS - SOLUTION

» Let’s say we we need to computie a » Question:

checksum on each object in an array. Should our implementation use threads

(or a thread pool) to parallelize our
» We know that computing checksum is an computation and complete the task

operation on GPU and it requires no l0. faster?
EXAMPLE 1: COMPUTE CHECKSUMS ’ Answer:
require 'di t/md5’
S Absolutely not. If each checksum
10.times.map do . .
Thread.new do computation requires no 10 and only
Di t::MD5.hexdi t d - .p @ .
o 0 exargestizand) CPU, there is zero benefit in using

end.each(&:value) threads in the MRI R“by.

EXAMPLE 2: CRAWLING THE WEB

» Let’s say we want download remote » Question:
content given an array of URLS. Should our implementation create

threads to parallelize our computation so

» We know that reading from a remote URL
that we can fetch URLs a lot faster?

over the network is an operation on 10

EXAMPLE 2: LOAD REMOTE URL p

require 'open-uri' DGfilIitBlY'

Wﬁimes -map do Use a Thread Pool to prevent creating too
read.new do
open('http://zombo.com') many threads Each thread will spend some

end

end.each(&:value) time waiting on 10: network is slow.

”~ ~

. \’\.r’VVVVVVVVVVVVVVVVV\/\/‘-/‘-/‘/ Y W -~ o

N N Nt N Nt Nt Nt Nl O Nt Nt Nl O NNONOONINEONI NN NSNS NS IS~ S S S

$ M) L =4 2=

\) \)] \ = _
00 aPala
DO 0002
Seleletel V-YW A
\w .t OUOOO ottoo 0 bol080?®
)®) o elec®e 0 0 0 v =
®efe oOc o e o 00 o0
oo“ooooo“onono“oo oonOOOO VWWW

s®e 0202020)
eo%ec® O 02e%e%¢ 008
Obbio coo egese3es" oa0,
‘0‘ aaeneea o,
..b et aeaownwawa ww
. ‘Q $,0,.06_.¢
0ot 09@0%0%0%... .W
e%cCec 0aCab 00,0 U
92020500 HH ‘o2
©Cc® eses020202020; ba®,
egesose Menn 0mnwnm HH
e eaCaetalalalal, 030!
0.0 Oooee 030202020 [
“0“00 oomowewowowewowr ”OVV
© Ooooo Qoaeeaaaaeeeeoo : o 4§52
O O oo o o 94
3 OOOOOQOQOOQOOOVV
) Qo.” O oo“onoooocov@vwv
, ‘ . . . ‘ 0.0,.0.0 . . ‘ v D0
\A; p obtoo ooooooo o.‘ .\vay\\
. . ‘ . “ ol v),) /) 2 y))
\\w_\\ x \._,,.\v_..\.

7 \, \.. \, L }))
.4 & \ \r \p 4 _ CaCa0,0020

.._\.\“.\“__“\“\“\“\“\“\H_\N_.._
/ F / F . F. . / / / / /
/ / / £ Y 2 / y) ;
p / / / / / / / /
2% e e e a%a® _

-

-

N NN NN NS N N N
N N N NSNS NS N N

CUNCURRENCTOOLBUX

N D

N Nt NI N2’ Nt N N’ NN NS - — - - - - > y

S

S N

- N N N N N N N N N N N N NN . N NSNS, NN N -~ - - >
et et Nt Nt Nl Nt N N Ol N O ONE NI NN ONIONSIENE NS NSNS N S S S -
> . N N N N Nt N Nt T 0t NS N NSO NS NS NSNS NS NS - - -

N

3.1 CONCURRENCY IN
RUBY SIANDARD LIBRARY

RUBY SUPPORTS THREE CORE FORMS OF CONCURRENCY

» Multi-Process (Puma, Unicorn, Sidekiq + sidekig-pool)

» Multi-Threaded (Puma, Sidekiq). Fibers and Guild are
here too.

» Evented (Thin)

BUILT-IN PRIMITIVES

» Ruby offers ONLY ONE thread- » One or more threads can retrieve the
safe class: Queue! work concurrently with other threads:
» One or more threads can add url = @queue.pop
work to the queue: » It's a blocking call!
require thread’ » If Queue is insufficient for your needs,

@queue = Queue.new

@queue << job there are gems that provide thread-safe

versions of Array, Hash, and other
standard data structures.

BUILT-IN PRIMITIVES

THREAD LOCAL, MUTEXES AND CONDITIONAL VARIABLES

» Thread Local: variables stored here are globally scoped to the
current thread.

.current|[:redis] = .hew

» Mutex: protect shared mutable data against race conditions

» Gonditional variable: elegant notification mechanism to avoid
infinite loops.

BUILT-IN PRIMITIVES

MUTEX IN ACTION

» Mutexes provide a mechanism for multiple threads
to synchronize access to a critical portion of code. In
other words, they help bring some order, and some
guarantees, to the world of multi-threaded chaos.

» The name 'mutex’ is shorthand for 'mutual
exclusion.’

» If you wrap some section of your code with a mutex,
you guarantee that no two threads can enter that
section at the same time.

require 'thread’

class
def initialize
@storage = .new
@mutex = .new
end

def push(item)
@nutex.synchronize do
@storage.push(item)
end
end

BUILT-IN PRIMITIVES

CONDITIONAL VARIABLE IN ACTION

» A ConditionVariable can be used to signal one (or
many) threads when some event happens, or some
state changes, whereas mutexes are a means of
synchronizing access to resources.

» Condition variables provide an inter-thread control
flow mechanism.

» For instance, if one thread should sleep until it
receives some work to do, another thread can
pass it some work, then signal it with a condition
variable to keep it from having to constantly check
for new input.

require 'thread’

class
def initialize
@storage = .new
@nutex = .new
@condvar
end

def push(item)
@nutex.synchronize do
@storage.push(item)
@condvar.signal
end
end

def pop
@nutex.synchronize do
while @storage.empty?
@condvar .wait(@mutex)
end

@storage.shift
end
end
end

-New

3.2 CONCURRENCY PRIMITIVES
PROVIDED BY GEMS

THREAD POOL

» Most well-known concurrency primitive is a thread pool: a data
structure that maintains either fixed, or capped number of threads
that can perform work by reading a thread-safe Queue:

THREAD POOL

THREAD POOLS — RUBY-THREAD

» Gem rUDY'thread prOVides require 'thread/pool’
an easy extension to the pool = Thread.pool(4)
built-in Thread Class: 10.times {

pool .process {
sleep 2
puts 'lol’
X
X

pool . shutdown

THREAD POOLS — CONCURRENT-RUBY

» Gem concurrent-ruby
provides a massive list of
concurrent and thread-safe
primitives, and is likely the
most definitive concurrency
ruby library today.

create a pool with fixed 5 threads
pool = Concurrent::FixedThreadPool.new(5)
pool .post do
perform some parallel work
end

As with all thread pools, execution resumes
immediately here in the caller thread

this pool is smarter — it can resize itself
based on the queue size
pool = Concurrent::ThreadPoolExecutor.new(
min_threads: 5,
max_threads: 5,
max_queue: 100,
fallback _policy: :caller_runs

)

General-purpose Concurrency Abstractions

» Async: A mixin module that provides simple asynchronous behavior to a class. Loosely based on Erlang's gen_server.
» ScheduledTask: Like a Future scheduled for a specific future time.

» TimerTask: A Thread that periodically wakes up to perform work at regular intervals.

» Promises: Unified implementation of futures and promises which combines features of previous Future , Promise , IVar

Event , dataflow , Delay ,and (partially) TimerTask into a single framework. It extensively uses the new synchronization

layer to make all the features non-blocking and lock-free, with the exception of obviously blocking operations like #wait ,
#value . It also offers better performance.

CONCURRENT-RUBY

Thread-safe Value Objects, Structures, and Collections

Collection classes that were originally part of the (deprecated) thread_safe gem:

. S » Array A thread-safe subclass of Ruby's standard Array.
’ Thls gem contalns Hash A thread-safe subclass of Ruby's standard Hash.
[
il
everything you'll ever need
to correctly use cﬂncu rrency Tuple A fixed size array with volatile (synchronized, thread safe) getters/setters.

i n ru by. Value objects inspired by other languages:

» Maybe A thread-safe, immutable object representing an optional value, based on Haskell Data.Maybe.

Set A thread-safe subclass of Ruby's standard Set.

Map A hash-like object that should have much better performance characteristics, especially under high concurrency, than

Concurrent: :Hash .

Structure classes derived from Ruby's Struct:

» ImmutableStruct Immutable struct where values are set at construction and cannot be changed later.

[o
» Alas, it also contains plenty
» MutableStruct Synchronized, mutable struct where values can be safely changed at any time.

w [
Of thlngs y0u n0t llkely tO » SettableStruct Synchronized, write-once struct where values can be set at most once, either at construction or any time
thereafter.
need, ever.

Thread-safe variables:

» Agent: A way to manage shared, mutable, asynchronous, independent state. Based on Clojure's Agent.
» Atom: A way to manage shared, mutable, synchronous, independent state. Based on Clojure's Atom.

» AtomicBoolean A boolean value that can be updated atomically.

» AtomicFixnum A numeric value that can be updated atomically.

» AtomicReference An object reference that may be updated atomically.

e Fxchanaer A svnchronization point at which threads can nair and swap elements within pairs. Based on Java's Fxchanaer

RUBY GEM — PARALLEL

» Gem parallel provides an easy to way to start additional ruby processes
and distribute work among them.
It supports both a thread pool, and a process pool, as shown in the

example:

Parallel.each(User.all, in_threads: 8) do |user|
ActiveRecord: :Base.connection pool.with connection do
user.update_attribute(:some_attribute, some value)
end
end

maybe helps: reconnect once inside every fork
Parallel.each(User.all, in processes: 8) do |user]
@reconnected | |= User.connection.reconnect! || true
user.update attribute(:some_attribute, some value)
end

SINGLE & MULTI-CORE CONCURRENCY IN RUBY — NOTABLE GEMS

» concurrent-ruby: thread-safe primitives such as Array, Hash,..

» sucker-punch: single-process async jobs

» eventmachine: event-based concurrency with fibers

» ruby-thread: extensions to Thread class such as a Pool, etc.

» parallel: both multi-process and multi-threaded jobs

» sidekiq: multu-threaded multi-process job processor

» celluloid: actor model sidekiqg is based on, unmailntained.

» atomic: atomic primitives, deprecated in favor of ruby-concurrency

https://github.com/ruby-concurrency/concurrent-ruby
https://github.com/brandonhilkert/sucker_punch
https://github.com/eventmachine/eventmachine
https://github.com/meh/ruby-thread
https://github.com/grosser/parallel
https://sidekiq.org/
https://github.com/celluloid/celluloid
https://github.com/ruby-concurrency/atomic

RUBY GEMS OFFERING MULTI-PROCESS CONCURRENCY

> sidekig » childprocess
— perhaps the easiest way to — great gem that spawns
utilize cores (but requires processes on the background

Enterprise for multi-process)
» Unicorn, puma, and thin

— all support multi-worker
configuration

» sidekig-pool
— an open source gem that
manages a set of Sidekiq workers

» But only Puma & Thin support ruby multi-threading.

https://sidekiq.org
https://github.com/vinted/sidekiq-pool
https://github.com/enkessler/childprocess

&f,;;,,,,,a?
V. | { =
a ®. Vvvv,wvu,u,“,,/
Ju uv J;JVC,,,,
wkm\v. tt egeae LHHHH
| m_. ‘ 0 o080, 0,05
QO oo oed 0 Otoo Calp®
\\\\ ,0 QQ o ooo o 0 vav
\“ 000000300 v
2 CaCalalaCa0 0.0 0
,OI(OOOOQ CaCeCa®a®s oeoooooocu
-00 oooaaeoeooo_f
) e%e%c%c%c%0® L0000
OOQ aaaaeeeooo?.
-60 0 QO 020%0%0C0C0C0%® 000000‘
Qoeoaaeoo e
'eCo Ooeaonoaeoo o2e®
,Ocooanonaaeoooo
0e0e0eololelolCalalalaOaOa020
“O“O“O”aaa HHHH ooooo ol “ ‘v
o eve
0“0”0”0 oaewamema%eeoo‘ooooo ‘M
occooonon eenawauauononooto ” w
OaCo 0%0%0%0%0%% -
\w 0 82000008000 000a000a0a08 o e
Seassscssacssacosssosctacstasss
VY 8
~%\ ofdooo“ooono“o“oo ooatvvw,
) . & |.‘..‘..‘. VV..;
68eCelelalte ooo ool \;vvvx\
w O .‘ .‘ ..-%V.MN_V\\\\.
_\\\ \\ ,..‘ \‘i {) .___.___,.\ <)
\\‘\\\\\\.;\wx\w\\\\\\\\‘_
SIS TSI SIS TS TS TSN IS I IS I\
oveYe% e %c 0% e "
/ / / . / / / / /
/ / £ / . / / / 4 /
/ / / / / / / /

\/\/v\/\/‘\/ e e A

”~

N N Nt \rvvvvvvvvvv\/\/vvvvv\/// NN

S A et i e e N N N NN NN NN N

-

-

-

-~

" N Nt Nt Nt Nt Sl N OO N N NN NN NSNS NN NSNS S

-~

-

i e e T O e e e Y eV e T

M

-

-~

N Nt Nt N N N Dt N NSNS NS NS

e S N N

S N

o e

o’ o v -

o Nt N Nt NS NN -

- - - >

P

o~ g

-

>

HOW MANY THREADS?

HOW MANY PROCESSES?

IN THIS SECTION WE DISCUSS HOW ONE WOULD FIGURE OUT IDEAL SETTINGS
FOR THE NUMBER OF RUBY PROCESSES, AND THE NUMBER OF RUBY THREADS
TO CONFIGURE EACH PROCESS WITH.

IT'S NOT A TRIVIAL EXCERCISE, BUT IF DONE RIGHT, ENSURES FULL
UTILIZATION OF THE VIRTUALIZED HARDWARE.

IN OTHER WORDS — IT SAVES SS.

DETERMINING THE NUMBER OF PROCESSES TO RUN

» This part is easy — if you are able to start
multiple Ruby processes (eg, if you are running
puma, unicorn or sidekiq), start as many ruby
processes as you have GPU cores available to you
on your virtual instance.

That's it. Have 16 cores? Start 16 ruby processes.

DETERMINING THE NUMBER OF THREADS

» Figuring out number of threads is a bit trickier.

» Sidekiq defaults to 15 threads per process.
This can be quite a lot.

» The truth is you must monitor the process and
observe "context switches" — if they happen a lot,
reduce # of threads. Otherwise increase.

YOU CAN USE NEWRELIC AND DATADOG TO DETERMINE THE
OPTIMAL NUMBER OF THREADS IN YOUR APPLICATION...

Z0OMING INTO A MULTI-THREADED RUBY PROCESS

A Single CPU Core

(Running 2 Ruby threads) MYSQL Database
~
Thread 1 Thread 2 | >

T . » A ruby process with two threads
B can take advantage of pauses

caused by waiting on 10 (i.e.
* P R— database response, file read,

Request Query 1 frrrprrerrrrrnsnns -
Request Query B Peerecsccnnncnnsssssssssssssfosssnsnsnsnns o

network, etc).

r Wait for Response ‘
T

Read Response 1 |lleefeccccccccnccncnsy
" l J

Request Query 2 frsefeorrreenennnn. »
" I s

Wait for Response

T

[Read Response 3]4 ..

READING NEW RELIC: WAITING ON 10 VERSUS CPU BURN

145 ms 6.13s
APP SERVER B BROWSER

Web transactions time v
175 ms

150 ms

125 ms

100 ms

75 ms

50 ms

25 ms

11:05 PM 11:10 P} 11:15 PM

aiicached ActiveRecord - Veb exterr

11:20 PM 11:25 PM

CPU BURN: 1 task per core, threading hurt

S S P St i S —

,,//‘/_,/ Sl) ///,./,_,,_. _,
D b W WL \ { \ ¢ \ ¢ ! { S0
‘;,_f.\/...\.t..,)uNQ))\U/_////////,,/
_A,\ywv%qunguQu¢dv,,wJ“,“,U/
4 .;l.\; C o ; g) o O
2020020 %cet0te 080" 3 HHHNH
e
\aqxz_t auo.ooooooo ‘ 030 03030002
220208 o oooooooooooooooocoo vawJ
{ n o.on no.o"o”eu&onoo-.ou 2 W VW
Se oon n.eomamaw&awa?eonon.o o..v
a9 0. .0.6,.0,.¢,.0,.0,.06,0 O ‘ .
o ..‘6509 900900909696 0‘ “ ‘.‘
‘ U Q@ﬂﬁﬂﬂﬁ Oﬁﬁﬂﬂﬁﬂﬂﬁﬂﬁ 9 “‘ ‘ .‘V
Ooooe Ce c nnnsnmnmnnﬁaaee eo OO O
O‘O 000 620%¢80%08 g aeoeo oo .
ocooooao neaonoaoooeaeeeo oooooo
‘.‘ ‘ 00696000000966990 ‘.‘ v
H efe oaoaooeaea eaCatatalaeaty
L4 . CalCL0,0,.,0,0 0 CL0 ‘ ‘ ‘ y
e . ‘ ©,.0,.0,.0 C,.0,.0 ‘ ()),
() . . 0,0,06_,0_0 ‘ C ‘ ‘)
¢ . . C,0,.,6,.0,.06,.06,.0 ‘ ‘ »)
‘ CLC,.0 Q CLC,L,0,0,0 ‘ 4)
r ‘ . CLC . C.0 c)
' “‘..““.‘ v,\
y; \ \ ; .“..““.“‘. ‘ “‘ v v) / » \
o IO . . o000 alal
_.ﬁ%\)““... .. _ \\\\\\\
626868680808 e808c8c8e0020262
D20.0,0_(' o O o €5 o ! <) \” I n OO0 L4
2PaCaCrC 0 0 0,0,0,0,0,0 00
/ 4 4 ¢ / / / / / £ / / /
/ / £ / £ / / / / r :
Bl aC ol aCaGala V& al
/ _ / /) /] y. V. 4 / :

A

“~. .

a4

PN

- 1 -
N e \vvvvv\/vvk,/v \IWV\(‘VVV\/\/\/\/ N N N N N T A

g i a V\’vvvvvvvvvvvvvvvvv A N N N W ~

. e e N e T ¥ Y N N N N N P -~ - - o

- o e et el e e e el Nl N Ol Nl Dl Ol N N NN NN NN P S . o

N N N Nt N N Nt Nt N NSENSONSI NS, NSNS NSNS NS S S o o

- S N N N N

N N

S

S N N N N N NS N N

B i A > - -~ -~ ”~ -

- -

- o N . N N N NS N NSNS NSNS NSNS NSNS NN NN NSNS
’ - N - N

o - -’ -~ e o N - -~ - > o~ ”

v - - -~ -~

WHAT MAKES MULTI-THREADED RUBY PROGRAM SAFE?

» Threads should never change variables that are

visible to other threads. require "thread

class
def initialize
@counter = 0
@nutex = .new
end

» This includes class instance variables, class
globals, and any other variables visible to threads.

» If you must access it, wrap it in a Mutex, like so:

S _ def increment
> Rule of thumb: avoid using Thread.new directly @mutex.synchronize do

inside of a web request lifecycle... @counter += 1
end

» Instead — use Sidekiq + Sidekiq Batch AP en(ei“d
which allows Ul to query the status of the
job.

WHAT MAKES A RUBY PROGRAM NOT THREAD SAFE?

> Simply put, when you share
mutable state between threads

> None of the core data structures
(except for Queue) in Ruby are
thread-safe.

> Use lhread.current[] to store
thread-specific variables

> Prefer to instantiate classes in

each thread (like Rails instantiates
Controllers for each web request).

> Use Queue to pass data between

Ruby threads

> Avoid accessing and writing to

Class Instance variables or any
other globals.

ISSUES RESULTING FROM MIS-USE OF CONCURRENCY

» may saturate all CPU » may take production down

» may underutilize the CPU » may produce extremely hard
to find bugs

» may lock ruby processes
and web request » may result in you having io

processing buy beer for your
teammates...

e 0% Ger 9is B B s

———e— -

FRRRAY T v
'“ oee '

-
’
asmep*00 ' C
B ke WL VL=]
v = 'n M '
ﬂ. e - - ..
LR .
L b 3
“ “
. 00 »
...'. L W .
oo ' o N
. :’ d :
. ’ - .
. - - »
* . zah B~ 84 8. B
28 "B 2R R Bl
u » .' - .
gy = 2
B2 5 @
L

*
AR
ETILY

-

a'/ 2
p-
- é :"o.
‘ LI el
» ' _ »

o... e '4".

THREAD LIGHITLY

: FE LR
' M
' ~ i S
g - 4 ow
o | 78 i
¥ ‘ .‘. ..::;:
. . » : : - X)
‘f" “.' ’ ' ." ‘g‘; '.
" Ty Oy
.‘ §' . » :
0' .. .':
L -
W[v, * Hy
‘a. . "'i v -
\s . q L
.. .
.
o_- ') .
) '. ‘Q
‘ R 8
l.....
\..'
o“."
.

|

111
..
o8

Y

S wre B
) ¢

4

-
A. 3 l'

.
RS /’
]

4

ACANOWLEDGEMENTS AND REFERENCES

> htips://pragprog.com/book/jsthreads/working-with-ruby-threads

> https://github.com/meh/ruby-thread

> https://www.toptal.com/ruby/ruby-concurrency-and-parallelism-a-practical-primer

> hitps://www.slideshare.net/JerryDAntonio/everything-you-know-about-the-gil-is-wrong

> htitps://github.com/jdantonio/concurrent-ruby-presentation

> htips://joearms.github.io/published/2013-04-05-concurrent-and-parallel-programming.html

> https://brianchan.us/2017/05/27/concurrency-vs-parallelism/

> htips://www.codebasehg.com/blog/ruby-threads-queue

> https://qgithub.com/dasch/ruby-csp

https://pragprog.com/book/jsthreads/working-with-ruby-threads
https://github.com/meh/ruby-thread
https://www.toptal.com/ruby/ruby-concurrency-and-parallelism-a-practical-primer
https://www.slideshare.net/JerryDAntonio/everything-you-know-about-the-gil-is-wrong
https://github.com/jdantonio/concurrent-ruby-presentation
https://joearms.github.io/published/2013-04-05-concurrent-and-parallel-programming.html
https://brianchan.us/2017/05/27/concurrency-vs-parallelism/
https://www.codebasehq.com/blog/ruby-threads-queue
https://github.com/dasch/ruby-csp

.A . ‘ .
) , ‘.. ‘ . ..
: V
)

Y 4
-

QUESTIONS?

t.one

ithub.com/kigster
reinven

twitter.com/k

https

http://github.com/kigster
http://twitter.com/kig
https://kig.re
https://reinvent.one/

