
ADVANCING OUR RUBY SERIES
PART 1: LIBRARIES, GEMS & RAILS

by Konstantin Gredeskoul

WHAT'S THE ONE THING I WANT YOU TO
LEARN AND APPLY AFTER THIS TALK?

I WANT EVERYONE TO MAKE A RUBY GEM TODAY.
YOU CAN EVEN DO IT WHILE YOU WATCH THIS TALK.

(You do not have to publish it publicly)

BUT FIRST, LET'S TALK ABOUT
SOFTWARE DESIGN

"Great software is the software that's easy to
change."

— DAVE THOMAS, AUTHOR OF "PROGRAMMING RUBY"

Here is a million dollar question: what makes software great?

WHAT DOES IT MEAN, "EASY TO
CHANGE"?

• It means that the software is easy to understand (it's
either self-explanatory or it has great comments)

• It means that there are comprehensive tests covering
every area, that allow for a change to be validated.

• It means that the classes are designed with single
responsibility in mind, and that design patterns (like
dependency injection) are used to decouple components.

• It also means that the source files are small and that the
public APIs is clearly defined and ideally documented.

THIS BRINGS US TO A CONVERSATION
ABOUT DEPENDENCIES

• Dependencies in software are inevitable

• Good dependencies are uni-directional:
A→B (but B doesn't know about A)

• "Spaghetti Codebase" refers to a
proliferation of bi-directional or even
circular dependencies:
A →B →C → A

HOW RAILS COOKED SPAGHETTI
• Rails introduced the concept of auto-loading everything.

• Every Rails file typically knows about every other Rails
file.

• If you are writing a method on User model, you don't
need to worry about resolving a dependency on a
Permission model — it's there "for free".

• This innovation is the reason behind most Rails
codebases becoming a spaghetti codebase over time.

HOW DOES RAILS DO THIS?
TODAY THE ANSWER IS ZEITWERK

Zeitwerk is an efficient and thread-safe code loader for Ruby.

Given a conventional file structure, Zeitwerk is able to load your
project's classes and modules on demand (autoloading), or upfront
(eager loading).

You don't need to write require calls for your own files, rather, you can
streamline your programming knowing that your classes and
modules are available everywhere. This feature is efficient, thread-
safe, and matches Ruby's semantics for constants.

Zeitwerk is also able to reload code, which may be handy while
developing web applications. Coordination is needed to reload in a
thread-safe manner.
https:!github.com/fxn/zeitwerk

https://github.com/fxn/zeitwerk

IS A SPAGHETTI CODEBASE EVEN
AN ISSUE?

Well, yes it bloody is, pardon my Australian.

It's hard to find things.

It's easy to inadvertently duplicate existing functionality, since
it's hard to find things.

The larger the app, the slower are the tests and the boot time

Finally, as companies grow it becomes problematic when 50+
engineers are working on the same codebase.

The solution has been to split the codebase up into
"pieces" (micro-services, extract gems, rails engines, libraries,
etc) and assign a team to own each component.

DEPENDENCY HELL IS REAL
• This is a real diagram

from Mozilla Firefox
(see this tweet)

• What about this one?

• This diagram still has
bidirectional deps,
but overall it's
infinitely better.

https://twitter.com/nayafia/status/873294386934816768

THIS BRINGS US TO
A VERY DANGEROUS BUT WIDE-SPREAD IDEA

THE IDEA THAT ONE CAN BECOME A GREAT RAILS ENGINEER
WITHOUT PROPERLY LEARNING RUBY...

OTHERWISE, IT'S SORT OF LIKE LEARNING HOW TO DRIVE A
CAR WITHOUT LEARNING HOW TO APPLY BREAKS.

IS DEAD WRONG.

When I learnt Rails myself, I wrote Ruby like a procedural language for four years.

TO BE A GREAT RAILS ENGINEER, YOU MUST FIRST BECOME A
GREAT RUBY ENGINEER.

These are auto-loaded automatically

These are also loaded when the app boots

These are loaded during migrations

Aha! lib/ is not auto-loaded by default

Loaded by Bundler

Loaded in tests

unless set to
require: false

HOW DOES RAILS MAGIC WORK?

CONVENTION OVER CONFIGURATION

TYPICAL RAILS SEQUENCE DIAGRAM
• It helps us with the MVC pattern...

• BUT....

• Where does the business logic reside?

• in Controllers? What if we want to offer both
API and web controllers?

• Perhaps some shared Service objects?

• Maybe in the Models themselves? Who doesn't
love "God Models" with their 300+ methods....

• Maybe we can extract some of the code
elsewhere?

• Is this UML diagram a good representation of
our application?

WHAT ABOUT EXCHANGE COMPARE?
WHAT FILES ARE TOO BIG?

❯ cd app
❯ find . -name '*.rb' -exec wc -l {} \; | sort -n | tail -10

 1481 ./models/insurance_full/plan.rb
 1527 ./controllers/statics_controller.rb
 1556 ./classes/qhp_importers/serff_importer.rb
 1712 ./models/enrollment_lead.rb
 2515 ./controllers/enroll/households_controller.rb
 2531 ./controllers/application_controller.rb
 2658 ./models/agent.rb
 3863 ./models/managed_person.rb
 4175 ./models/managed_application.rb
 5833 ./models/ffm_application.rb

❯ cd app
❯ find . -name '*.rb' -exec bash -c \
 "grep 'def ' {} | wc -l | tr -d '\n' ; \
 printf '\t%-90s\n' {}" \; | \
 sort -n | \
 tail -10

 75 ./classes/off_exchange/carrier_configurations/default_carrier_configuration.rb
 77 ./classes/qhp_importers/serff_importer.rb
 78 ./controllers/find_plans_controller.rb
 97 ./models/off_ex/application.rb
 98 ./classes/federal_exchange/data_hub_service.rb
 156 ./controllers/application_controller.rb
 192 ./models/managed_person.rb
 210 ./models/managed_application.rb
 222 ./models/agent.rb
 354 ./models/ffm_application.rb

WHAT ABOUT EXCHANGE COMPARE?
WHAT FILES HAVE TOO MANY METHODS?

SO THIS IS WHERE OUR BUSINESS LOGIC,
HELPERS, API LOGIC IS LOCATED

• Its in files that are up to 5K lines long

• And have up to 354 methods

• I hope you see that our Rails app is in trouble.

• It needs our love. Love to refactor. Love of extracting the code that does not
depend on anything, but other code depends on it.

• In order for this app to be maintainable by future engineers, we simply can
not afford models that have 5K lines and hundreds of methods.

SO HOW DO WE GO

To here?

From
here....

THERE ARE SEVERAL ESTABLISHED WAYS
OF SPLITTING A MONOLITH

What are our options:

Identify code blocks that do not depend on anything else. These often live in the /lib folder.

This code can be extracted into the ruby gems.

With business logic it's trickier.

But one of the most useful design patterns is called "The Facade": where one module or a class acts
as a public API gateway to an entire sub-system.

This allows grouping related models together, and "packaging" them as a single unit.

Shopify built a tool that can verify that module boundaries have not been broken (it's called
packwerk — https://github.com/Shopify/packwerk

https://github.com/Shopify/packwerk

PACKWERK VERIFIES THAT THE DECLARED PACKAGE CONTRACTS
ARE VALID.

COHESION & COUPLING
Structured design (SD) is concerned with the development of modules and
the synthesis of these modules in a so-called "module hierarchy".

In order to design optimal module structure and interfaces two principles
are crucial:

• Cohesion which is "concerned with the grouping of functionally related
processes into a particular module", and,

• Coupling relates to "the flow of information or parameters passed
between modules. Optimal coupling reduces the interfaces of modules
and the resulting complexity of the software".

Structured design was developed by Larry Constantine in the late 1960s,

then refined and published with collaborators in the 1970s

https://en.wikipedia.org/wiki/Cohesion_(computer_science)
https://en.wikipedia.org/wiki/Coupling_(computer_science)
https://en.wikipedia.org/wiki/Larry_Constantine

GEMS ARE RUBY LIBRARIES THAT CAN BE
EXTRACTED FROM THE CODEBASE.
So, let's make one and see what they can do!

RUBY LIBRARIES
Ruby libraries are typically packaged up using the gem format, and distributed using rubygems.org.

A gem contains a number of useful pieces of information (this list is not exhaustive):

A bunch of metadata, like name, version, description, summary, email address, etc.

A list of all the files contained in the package.

A list of executables that come with the gem and their location in the gem (usually bin)

A list of directories that should be put on the Ruby load path (usually lib)

A list of other Ruby libraries that this library needs in order to function (dependencies)

SOME IMPORTANT REFERENCES
Clarifying the Roles of the .gemspec and Gemfile

https://yehudakatz.com/2010/12/16/clarifying-the-roles-of-the-gemspec-and-gemfile/

How to create a Ruby gem with Bundler

https://bundler.io/guides/creating_gem.html

Gemsmith by Brooke Kuhlmann can create opinionated gems with many options

https://alchemists.io/projects/gemsmith

HOE software by Ryan Davis, can produce a template-based gems

https://www.zenspider.com/projects/hoe.html

https://yehudakatz.com/2010/12/16/clarifying-the-roles-of-the-gemspec-and-gemfile/
https://bundler.io/guides/creating_gem.html
https://alchemists.io/team/brooke_kuhlmann
https://alchemists.io/projects/gemsmith
https://www.zenspider.com/projects/hoe.html

gem creation demo

bundle gem sqrt --exe --mit --ci=github --linter=rubocop

Fix the sqrt.gemspec by removing TODOs

Then run "bundle install", and...

THANK YOU!
Some of my gems that are published:

https://rubygems.org/profiles/kigster

My blog:

https://kig.re/

https://rubygems.org/profiles/kigster
https://kig.re/

