
DESIGN FOR LOOSE COUPLING
RUBY SAN FRANCISCO MEETUP

BY KONSTANTIN GREDESKOUL

IN SOFTWARE DEVELOPMENT, "TIGHT COUPLING" REFERS TO A SITUATION WHERE COMPONENTS
WITHIN A SYSTEM ARE HIGHLY DEPENDENT ON EACH OTHER, MEANING CHANGES TO ONE

COMPONENT CAN SIGNIFICANTLY IMPACT OTHER COMPONENTS,

WHILE "LOOSE COUPLING" INDICATES THAT COMPONENTS ARE MORE INDEPENDENT, ALLOWING
MODIFICATIONS TO ONE COMPONENT WITHOUT MAJOR REPERCUSSIONS ON OTHERS, MAKING THE

SYSTEM OVERALL MORE FLEXIBLE AND MAINTAINABLE

WITH THE DEFINITION OUT OF THE WAY, LOOK IT AT THIS WAY....

▸ When you begin a new
application, Rails or not, you will
likely start by tightly coupling
your code.

▸ Surface area is still small and
heavy abstractions are not yet
necessary.

▸ But things get harder with
exponential complexity if the
tangled spaghetti is not
modularized.

TIGHT COUPLING IS A NATURAL START FOR MOST APPLICATIONS

WHAT IS THE ALTERNATIVE?
▸ You design your application as a set of

interoperating modules (or sub-systems)
with clear boundaries and enforcement
capabilities.

▸ Start thinking about it when the app no
longer fits in any individual head (or you
can think ahead knowing this awaits you).

▸ Or, when many team members start to
think that there are "too many cooks in
the kitchen"...

▸ Or, when the developer productivity
screeches to a halt, or onboarding takes
more than six months.

BUT WHY DO WE CARE ABOUT THIS?
WHAT DO WE GET FROM IT, AND WHAT DO WE LOSE?

TO ANSWER THAT, WE SHOULD STEP BACK A BIT

▸ I would imagine that many folks in the audience write software for
a living (or perhaps aspire to) — software that's currently running
in production, generating revenue, and which any number of other
businesses (B2B) or end-users (B2C), or both (B2B2C) depend on.

▸ Question!

What makes software "good"? Or more specifically, and at the
same time more generally, how do you know the software meets
the needs of the business?

THE ANSWER IS DIFFERENT DEPENDING ON WHO YOU ASK

▸ CEO or Head of Product:

▸ How well does the software adapt to ever changing requirements?

▸ How quickly can we prototype, test and launch new ideas as product features?

▸ Is the software reliable, scalable, and secure?

▸ CFO & Investors:

▸ How much did it cost (and does it cost now) to maintain and advance this
application? Is it massively expensive?

▸ One way of measuring this is finding the cost of running the service for a
single user.

WHAT DOES THE BUSINESS ULTIMATELY WANT FROM THE APP?
AND THE ENGINEERING ORGANIZATION?

▸ That the app works correctly (low defect rate)

▸ It works within the agreed SLA (99.99% uptime) and
performance SLA

▸ It supports rapid prototyping (which can be messy)

▸ It supports fast feature development, including tests.

▸ Metrics above should not decline with application or team size.

OVER THE LIFECYCLE OF THE APP'S LIFE, SOMETHING ELSE ARISES:
THE TECHNICAL DEBT

▸ As the software launches, it moves into a new phase of maintenance
and enhancements (feature development).
▸ It is believed that most businesses that thrive and have long-lasting applications, end

up with the cost of maintenance being orders of magnitude larger than the initial cost
of building and launching the green-field app.

▸ As the codebase grows, becomes messy, large, often not fully tested, it
starts to carry a heavy technical debt.

▸ This debt often prevents the business from moving FAST when the app
is large UNLESS the technical debt is being continually addressed.

SO THE QUESTION THEREFORE BECOMES...
HOW DO WE GO FROM A SMALL MESSY APP WITH SUPER-
HIGH PRODUCTIVITY TO A VERY LARGE APP WITHOUT
LOOSING TOO MUCH DEV VELOCITY?

SOFTWARE DESIGN THAT'S FORWARD-LOOKING, AS IN IT
ANTICIPATES THE FUTURE, BUT DOES NOT PRESCRIBE IT.

ONE OF POSSIBLE ANSWERS COULD BE THIS:

AND WHAT'S THE BEST WAY TO DESIGN SOFTWARE SO THAT
IT ANTICIPATES FUTURE (CHANGES), WITHOUT PREMATURELY
OPTIMIZING OR PRESCRBING SOLUTIONS TO YET UNKNOWN
PROBLEMS?

LOOSE COUPLING
ONE OF THE SIMPLEST CONCEPTS TO GRASP,

BUT ALSO HARDEST TO DO CONSISTENTLY AND WELL

BUT WHAT ARE THE DIFFERENT WAYS WE CAN
ACTUALLY WRITE LOOSELY COUPLED CODE?

1. BY MODULARIZING OUR APPLICATION AND USING FACADE
PATTERN TO INTERFACE WITH OTHER MODULES (PACKWERK)

2. BY USING OBSERVABLE PATTERN, DECOUPLING THE
SUBSCRIBER FROM EVENT PRODUCER... EG USING EVENTS.

3. BY USING INVERSION OF CONTROL OR DEPENDENCY
INJECTION PATTERN, AVOIDING DIRECT INSTANTIATION

WHERE DO WE GO FROM HERE?

▸ We'll sketch out loosely coupled modules for a typical e-comm
marketplace (based on a real application)

▸ We'll look at several patterns that participate in loose coupling

▸ Such as Facade or a Library (Gem)

▸ Inversion of Control

▸ Look at how Packwerk can be applied incrementally to gradually
migrate a very large Rails app into well-defined modules.

E-COMM MARKETPLACE

EXAMPLE: E-COMMERCE MARKETPLACE (THINK ETSY, ETC)

▸ Let's look at how would be break out our marketplace data model
into separate modules that can be linked together.

▸ We want to combine classes that are tightly coupled together, but
separate them from other parts of the system that's not directly
related.

▸ We'll break up the marketplace Data Model into six modules for
this example, but your mileage may vary.

MODULARIZING E-COMMERCE MARKETPLACE
Daily Sales

Daily Sales Component

User Profiles & Accounting

User, Payments & Transactions

Checkout

Cart, Order, Checkout, Line Items

Product Catalog

Products, Variants, Inventory

Marketplace Stores

Store Info, Details, Owners, Feed

Seller Payouts

Accounts, Transfers, Commissions, Taxes, etc

Checks, Uses

Adds to Cart

Begins Checkout

Shops on

Belongs to

Submits a commission to the seller

Updates store’s sales data

USER DATA &
PAYMENT DATA

User Data & Payment Data Including Transactions

 id
 recipient_name
 address1
 city
 state_code
 zip_code
 country_code
 addressable_id
 addressable_type
 type
 created_at
 updated_at

Addresses

 id
 email
 encrypted_password
 reset_password_token
 reset_password_sent_at
 remember_created_at
 sign_in_count
 current_sign_in_at
 last_sign_in_at
 current_sign_in_ip
 last_sign_in_ip
 confirmation_token
 confirmed_at
 confirmation_sent_at
 unconfirmed_email
 failed_attempts
 unlock_token
 locked_at
 authentication_token
 followers_count
 created_at
 updated_at
 username
 avatar
 state
 saves_count
 collections_count
 stores_count
 following_count
 reencrypted
 collections_i_follow_count
 stories_count
 avatar_hash
 orders_count

User

 id
 name
 created_at
 updated_at

Gateway

update user’s credit card
with the last successful

card info after each order

most recent
undeleted card

 id
 type
 created_at
 updated_at
 order_id
 user_id

 total_cents
 total_currency
 refunded_cents

 credit_card_id
 gateway_id
 external_id
 external_user_id
 last4
 exp
 cc_type
 address_zip_check
 address_line1_check
 cvc_check

 user_credits_id
 balance_cents
 balance_currency

PaymentMethods

 id
 external_id
 transaction_type
 amount_cents
 currency
 description
 failure_message
 failure_code
 gateway_id
 payment_method_id
 cc_exp
 cc_last4
 cc_type
 created_at
 updated_at
 sub_order_id
 state
 transaction_fee_cents
 source
 reason

PaymentTransaction

 id
 user_id
 balance_cents
 balance_currency
 last_used_at

UserCredits

 id
 user_credit_id
 amount_cents
 type { credit | debit }
 admin_id
 admin_reason { text }
 created_at
 payment_transaction_id

UserCreditsTransactions

CreditCard

 id
 user_id

 gateway_id
 external_id
 external_user_id
 last4
 exp
 cc_type

 deleted_at
 last_used_at

 created_at

Each Order logs each
payment into PaymentMethods,

and updates CreditCard with

PRODUCT CATALOG,
PRODUCT VARIANTS,
PRICING, PRODUCT
IMAGES, ETC.

Product Catalog

 id
 poster_id
 store_id
 name
 slug
 state
 short_description
 url
 price_cents
 currency
 image
 saves_count
 views_count
 category_id
 created_at
 updated_at
 original_save_id
 original_image_url
 processing
 image_hash
 remote_product_id
 original_save_sid
 source
 buy_clicks_count
 sale_price_cents
 sale_price_currency
 variants_count
 image_server_enabled

Product

 id
 store_id
 remote_product_id
 image_hash
 color
 size
 created_at
 updated_at
 state
 remote_variant_id
 price_cents
 currency
 sale_price_cents
 sale_price_currency
 canonical_product_id
 availability

Variant

 product_id
 keywords
 description
 description_content_type

ProductDetail

 id
 variant_id
 attribute_value_id
 created_at
 sort_position

VariantAttributeValue

 id
 attribute_type_id
 value
 created_at

AttributeValue

 id
 name
 created_at

AttributeType

 id
 variant_id
 image_hash
 position
 created_at

VariantImage

MARKETPLACE
STORES, STORE
DETAILS, OWNERS,
PRODUCT FEED
INFOS, ETC

Marketplace Stores & Product Feeds

 id
 domain
 state
 products_count
 followers_count
 created_at
 updated_at
 parent_store_id
 name
 avatar
 price_category
 category_id
 managers_count
 slug
 display_name
 product_auto_expiration_days
 checkout_type
 active_products_count
 admin_checkout_only
 beta_app_checkout_only

Store

 id
 store_id
 calc_type
 calc_value
 created_at
 updated_at
 support_email
 tax_rate
 taxable_state
 style_id
 free_shipping_min_cents
 estimated_delivery_time
 commission_rate
 platform_type
 tier
 buyable_since
 admin_note
 return_policy
 customer_support_phone
 long_description
 city
 state
 country_code
 fulfillment_type

StoreDetail

 id
 user_id
 store_id
 state
 created_at
 updated_at

StoreOwners

 id
 from
 to
 store_id
 comment
 created_at
 updated_at

StoreStateTransition

 id
 store_feed_signup_id
 full_name
 phone
 email
 contact_type
 created_at
 updated_at

StoreFeedContact

 id
 store_id
 feed_url
 created_at
 updated_at
 store_state
 username
 password
 domain
 user_id
 state

StoreFeedSignup

 store_id
 city
 state_province
 country
 created_at
 updated_at

StoreProfile

ORDERS, LINE-ITEMS,
CHECKOUT,
SHIPMENTS,
TRACKING, ORDER
STATUS, TAXES, ETC.

User Checkout, Orders, Shipments

id
user_id
total_cents
sub_total_cents
shipping_cents
tax_cents

order_currency
type
state

created_at
updated_at

assigned_admin_id
payment_profile_id

error_type
test_mode
placed_at

Order

 id
 comment
 created_at
 updated_at
 order_id
 admin_id
 from_state
 to_state

OrderStateHistory

 id
 product_id
 price_cents
 created_at
 updated_at
 variant_id
 quantity
 sub_order_id
 estimated_price_cents
 commission_cents
 processing_cents
 tax_collected_cents
 tax_classification

LineItem

 id
 tracking_number
 tracking_company
 sub_order_id
 external_id
 created_at
 updated_at

Fulfillment

 id
 order_id
 store_id
 external_order_id
 vendor_payment_gateway_id
 total_cents

 tax_cents
 shipping_cents
 order_currency
 created_at
 updated_at
 state
 estimated_delivery_time
 error_type
 fulfilled_by
 fulfiller_guid
 comment
 commission_cents
 processing_fee_cents

 refunded_cents
 refunded_currency

SubOrder

id
sub_order_id
field
admin_id
created_at
updated_at
comment
from_value
to_value

SubOrderChangeHistory

 id
 line_item_id
 zip_code_from
 zip_code_to
 region_code
 state

 tax_state_cents
 tax_county_cents
 tax_city_cents
 tax_special_cents
 tax_combined_cents

SubOrderTax

MARKETPLACE
SELLER ACCOUNTS,
PAYMENT
TRANSFERS
(COMMISSIONS),
ETC.

Marketplace Seller Payouts and Transfers

 id
 primary_sub_order_id (nullable)
 type
 vendor_account_id
 external_account_id
 external_transfer_id
 external_payment_id
 amount_cents
 currency
 state
 created_at
 updated_at
 expect_deposit_at
 deleted_at

PaymentTransfer

 id
 transfer_id
 from
 to
 failure_message
 failure_code
 created_at

PaymentTransferHistory

id
store_id
external_id
external_bank_account_id
first_name
last_name
date_of_birth
external_bank_account_last4
secret_key
publishable_key
created_at
updated_at
deleted_at

VendorAccount
 id
 transfer_id
 sub_order_id

SubOrderTransfer
id
source_transfer_id
destination_transfer_id
type

TransferMapping

Marketplace Stores & Product Feeds

 id
 domain
 state
 products_count
 followers_count
 created_at
 updated_at
 parent_store_id
 name
 avatar
 price_category
 category_id
 managers_count
 slug
 display_name
 product_auto_expiration_days
 checkout_type
 active_products_count
 admin_checkout_only
 beta_app_checkout_only

Store

 id
 store_id
 calc_type
 calc_value
 created_at
 updated_at
 support_email
 tax_rate
 taxable_state
 style_id
 free_shipping_min_cents
 estimated_delivery_time
 commission_rate
 platform_type
 tier
 buyable_since
 admin_note
 return_policy
 customer_support_phone
 long_description
 city
 state
 country_code
 fulfillment_type

StoreDetail

 id
 user_id
 store_id
 state
 created_at
 updated_at

StoreOwners

 id
 from
 to
 store_id
 comment
 created_at
 updated_at

StoreStateTransition

 id
 store_feed_signup_id
 full_name
 phone
 email
 contact_type
 created_at
 updated_at

StoreFeedContact

 id
 store_id
 feed_url
 created_at
 updated_at
 store_state
 username
 password
 domain
 user_id
 state

StoreFeedSignup

 store_id
 city
 state_province
 country
 created_at
 updated_at

StoreProfile

Product Catalog

 id
 poster_id
 store_id
 name
 slug
 state
 short_description
 url
 price_cents
 currency
 image
 saves_count
 views_count
 category_id
 created_at
 updated_at
 original_save_id
 original_image_url
 processing
 image_hash
 remote_product_id
 original_save_sid
 source
 buy_clicks_count
 sale_price_cents
 sale_price_currency
 variants_count
 image_server_enabled

Product

 id
 store_id
 remote_product_id
 image_hash
 color
 size
 created_at
 updated_at
 state
 remote_variant_id
 price_cents
 currency
 sale_price_cents
 sale_price_currency
 canonical_product_id
 availability

Variant

 product_id
 keywords
 description
 description_content_type

ProductDetail

 id
 variant_id
 attribute_value_id
 created_at
 sort_position

VariantAttributeValue

 id
 attribute_type_id
 value
 created_at

AttributeValue

 id
 name
 created_at

AttributeType

 id
 variant_id
 image_hash
 position
 created_at

VariantImage

User Checkout, Orders, Shipments

id
user_id
total_cents
sub_total_cents
shipping_cents
tax_cents

order_currency
type
state

created_at
updated_at

assigned_admin_id
payment_profile_id

error_type
test_mode
placed_at

Order

 id
 comment
 created_at
 updated_at
 order_id
 admin_id
 from_state
 to_state

OrderStateHistory

 id
 product_id
 price_cents
 created_at
 updated_at
 variant_id
 quantity
 sub_order_id
 estimated_price_cents
 commission_cents
 processing_cents
 tax_collected_cents
 tax_classification

LineItem

 id
 tracking_number
 tracking_company
 sub_order_id
 external_id
 created_at
 updated_at

Fulfillment

 id
 order_id
 store_id
 external_order_id
 vendor_payment_gateway_id
 total_cents

 tax_cents
 shipping_cents
 order_currency
 created_at
 updated_at
 state
 estimated_delivery_time
 error_type
 fulfilled_by
 fulfiller_guid
 comment
 commission_cents
 processing_fee_cents

 refunded_cents
 refunded_currency

SubOrder

id
sub_order_id
field
admin_id
created_at
updated_at
comment
from_value
to_value

SubOrderChangeHistory

 id
 line_item_id
 zip_code_from
 zip_code_to
 region_code
 state

 tax_state_cents
 tax_county_cents
 tax_city_cents
 tax_special_cents
 tax_combined_cents

SubOrderTax

Marketplace Seller Payouts and Transfers

 id
 primary_sub_order_id (nullable)

 type
 vendor_account_id
 external_account_id
 external_transfer_id
 external_payment_id

 amount_cents
 currency

 state
 created_at
 updated_at

 expect_deposit_at
 deleted_at

PaymentTransfer

 id
 transfer_id

 from
 to

 failure_message
 failure_code
 created_at

PaymentTransferHistory

id
store_id

external_id
external_bank_account_id

first_name
last_name

date_of_birth
external_bank_account_last4

secret_key
publishable_key

created_at
updated_at
deleted_at

VendorAccount
 id

 transfer_id
 sub_order_id

SubOrderTransfer
id

source_transfer_id
destination_transfer_id

type

TransferMapping

Order was
paid with…

User Data & Payment Data Including Transactions

 id
 recipient_name
 address1
 city
 state_code
 zip_code
 country_code
 addressable_id
 addressable_type
 type
 created_at
 updated_at

Addresses

 id
 email
 encrypted_password
 reset_password_token
 reset_password_sent_at
 remember_created_at
 sign_in_count
 current_sign_in_at
 last_sign_in_at
 current_sign_in_ip
 last_sign_in_ip
 confirmation_token
 confirmed_at
 confirmation_sent_at
 unconfirmed_email
 failed_attempts
 unlock_token
 locked_at
 authentication_token
 followers_count
 created_at
 updated_at
 username
 avatar
 state
 saves_count
 collections_count
 stores_count
 following_count
 reencrypted
 collections_i_follow_count
 stories_count
 avatar_hash
 orders_count

User

 id
 name
 created_at
 updated_at

Gateway

update user’s credit card
with the last successful

card info after each order

most recent
undeleted card

 id
 type
 created_at
 updated_at
 order_id
 user_id

 total_cents
 total_currency
 refunded_cents

 credit_card_id
 gateway_id
 external_id
 external_user_id
 last4
 exp
 cc_type
 address_zip_check
 address_line1_check
 cvc_check

 user_credits_id
 balance_cents
 balance_currency

PaymentMethods

 id
 external_id
 transaction_type
 amount_cents
 currency
 description
 failure_message
 failure_code
 gateway_id
 payment_method_id
 cc_exp
 cc_last4
 cc_type
 created_at
 updated_at
 sub_order_id
 state
 transaction_fee_cents
 source
 reason

PaymentTransaction

 id
 user_id
 balance_cents
 balance_currency
 last_used_at

UserCredits

 id
 user_credit_id
 amount_cents
 type { credit | debit }
 admin_id
 admin_reason { text }
 created_at
 payment_transaction_id

UserCreditsTransactions

CreditCard

 id
 user_id

 gateway_id
 external_id
 external_user_id
 last4
 exp
 cc_type

 deleted_at
 last_used_at

 created_at

Each Order logs each
payment into PaymentMethods,

and updates CreditCard with

Daily Sales

 id
 state
 user_id
 discount_percent
 duration
 started_at
 ended_at
 shown_until
 redeemed_at
 created_at

 DailySale

 id
 daily_sale_id
 product_id
 purchased (boolean)

 DailySaleProduct

 id
 user_id
 daily_sale_product_id
 daily_sale_id
 variant_id
 variant_price_cents
 line_item_id

 DailySaleRedemptions

VOLA! THE DB SCHEMA FOR A BUYER/SELLER MARKETPLACE!

SO WHAT DID WE LEARN?

▸ In most domains it's not too difficult to learn how application data model coalesces into
modules based on cohesion

▸ Cohesion means high level of connectedness. The Order model will likely need to be in
the same module as the ShoppingCart, LineItem, Fulfillment (shipment), and so on.

▸ But the Checkout module does not need to know necessarily what it's checking out. A
polymorphic table of "Sellables" can define which models can be checked out and how.

▸ Product is a model from another module, but it appears in the Checkout module as a
Sellable DataObject, not as a Product.

▸ This is a crucial and necessary separation that has to be enforced, or modularization is
pointless if Checkout module has direct access to the Product model from another
module.

WHAT OPTIONS DO WE HAVE FOR LOOSE COUPLING IN RAILS APPS?

▸ Packwerk — organize Rails components (app, views, models)
into the typical rails folders, but grouped together under the
"packs" folder.

▸ Rails Engines — does not have good boundary enforcement

▸ Ruby Gems — great for libraries, CLI tools, even some Rails
plugins. When appropriate gems are a fantastic way to extract
some low-level functionality.

▸ The dependency should always be from the app to the gem, and
never backwards, unless inversion of control is applied.

WHAT IS PACKWERK?

▸ Packwerk is a Ruby gem used to enforce boundaries and
modularize Rails applications.

▸ Packwerk can be used to:

▸ Combine groups of files into packages

▸ Define package-level constant visibility (i.e. have publicly
accessible constants)

▸ Help existing codebases to become more modular without
obstructing development

▸ https://github.com/Shopify/packwerk

https://github.com/Shopify/packwerk

INTRODUCING PACKWERK

▸ Source: https://bit.ly/packwerk
Talk on Packwerk by Marc Reynolds at Rocky Mountain Ruby

https://bit.ly/packwerk

BREAKING UP INTO MODULES

▸ Source: https://bit.ly/packwerk
Talk on Packwerk by Marc Reynolds at Rocky Mountain Ruby

https://bit.ly/packwerk

VERIFYING BOUNDARIES

▸ Source: https://bit.ly/packwerk
Talk on Packwerk by Marc Reynolds at Rocky Mountain Ruby

https://bit.ly/packwerk

HOW TO INTEGRATE PACKWERK

▸ Figure out what you have first (analyze your data model)

▸ Move code into packages

▸ Declare package dependencies

▸ Open public interfaces, create DataObjects

▸ Document public interfaces and assign code owners

▸ Maintain and Grow

▸ Source: https://bit.ly/packwerk
Talk on Packwerk by Marc Reynolds at Rocky Mountain Ruby

https://bit.ly/packwerk

WHAT ABOUT FACADE AND INVERSION OF CONTROL?

FACADE DESIGN PATTERN

▸ Is a public interface for your module

▸ Shields access to module internals

▸ Does not return references to
ActiveRecord objects.

▸ Instead returns DataObjects constructed
from AR models and other data.

INVERSION OF CONTROL OR DEPENDENCY INJECTION

▸ Instead of directly instantiating classes that do not
belong to the current module, we can ask an
appropriate module to return us the data we need.

▸ That's called inversion of control (IoC)

▸ Eg. the Checkout module must be able to price the
product, show it's image, and description on the
checkout.

▸ The Checkout.checkout() method should then
be "injected" with the data objects that contain all of
these details without providing direct access to the
Product ActiveRecord model.

SO WHAT ARE THE TAKEAWAYS?
▸ Loosely coupled, modular design does

not appear out of the blue or
accidentally.

▸ It's an answer to the problem of ever
growing spaghetti codebase that
nobody seems to understand after a
certain point.

▸ Modular design is a necessity for large
teams (100+) working on a monolithic
codebase. Some companies will stall
at much smaller numbers.

▸ Loose coupling design encourages
engineers to think in terms of
components in their module and their
public APIs, and use existing or negotiate
new APIs with the owners of other
modules,

▸ This means a good chance of doing it
right without adding any new tech debt.

▸ Packwerk offers perhaps the most
flexible, incremental and well-travelled
path to modularizing any Ruby codebase.

▸ It is the only such tool currently used in
production by Shopify and many
others.

ENJOY LOOSELY COUPLED CODEBASES AND
SPEED UP DEV VELOCITY, AND REDUCE TECH DEBT.

IN THE END WE CAN ALL HOPEFULLY....

THAT'S ALL WE HAVE
TIME FOR TODAY ...

Thank you!KONSTANTIN GREDESKOUL
ACADEMIA.EDU
KIG@KIG.RE
@KIGSTER ON GITHUB
@KIG ON X/TWITTER

ANY QUESTIONS?
Please watch the Packwerk talk by Marc Reynolds
Rocky Mountain Ruby

https://bit.ly/packwerk

© 2024 Konstantin Gredeskoul, for academia.edu

http://academia.edu
mailto:kig@kig.re
https://bit.ly/packwerk
http://academia.edu

