
KONSTANTIN GREDESKOUL AUGUST 2024

RUBY 3
CONCURRENCY

#SFRUBY | @GITHUB | @KIGSTER

WHO AM I?

KONSTANTIN GREDESKOUL AUGUST 2024

Life-long software engineer
Has been doing web tech since 1998
Ex-CTO of a social network Wanelo
Rubyist since 2007
50 Gems with 140M+ downloads
Self-taught programmer, with a Mathematics degree

KONSTANTIN GREDESKOUL AUGUST 2024

CORE CONCEPTS

CONCURRENCY
VS PARALLELISM

CONCURRENCY PARALLEISM

Concurrency is the ability of a system to handle multiple tasks at the same time,
or the interleaving of tasks to make progress on several tasks simultaneously.
However, these tasks may not necessarily be running at the exact same time.

KONSTANTIN GREDESKOUL AUGUST 2024

CONCURRENCY
VS PARALLELISM

CONCURRENCY PARALLEISM

Concurrency is our PERCEPTION of multi-tasking...

KONSTANTIN GREDESKOUL AUGUST 2024

even when it’s not true parallelism, it can still be useful when
some tasks are waiting on io: network sockets & file io

CONCURRENCY
VS PARALLELISM

CONCURRENCY PARALLEISM

Parallelism is the simultaneous execution of multiple tasks at exactly the same time. This requires
multiple processing units (like multiple CPU cores), where each core handles a separate task.

KONSTANTIN GREDESKOUL AUGUST 2024

Parallelism is about doing lots of things at once, with tasks truly running in parallel. This is
possible on multi-core processors where different tasks can be executed simultaneously on

different cores.

KONSTANTIN GREDESKOUL AUGUST 2024

BASIC
TERMINOLOGY

UNIX PROCESS

THREAD

CORE CONCEPTS

A UNIX process is an instance of a running program.
It consists of: program's code, data, a set of resources required (files opened, connections)
A process is started, starts running, can be waiting / paused, then exited, or killed by the Kernel.

A thread within a program is the smallest unit of execution that can flow independently
of other threads. It represents a single sequence of instructions or a "path of execution"
within a program. Threads can share memory (although they must protect writes to
shared memory using locks called Mutexes).

Threads make efficient use of the system's resources, especially in scenarios that involve
waiting for I/O operations.

GREEN THREADS

NATIVE THREADS

CORE CONCEPTS

A green thread is a type of thread that is managed by a runtime library or virtual machine (VM) instead of
natively by the operating system's kernel. These threads are called "green" because they are not true
native threads; instead, they are implemented in user space, meaning that their scheduling and
management are handled by the application's runtime environment.

Early JVM had green threads until they replaced them with native threads in 1.3.

A native thread in a UNIX operating system is a lightweight unit of execution that is managed
directly by the operating system's kernel. Native threads, often referred to as kernel threads, allow
a program to perform multiple tasks concurrently within a single process. This is why they are often
called “Lightweight Processes” or LWPs.

SINGLE PROCESS, MULTIPLE THREADS

MULTI-THREADED

Within any UNIX process there could be any number of native kernel threads
(depending on what language was used to write the executable command)

A single Ruby 2 process always ran on a single logical CPU core and could only
truly perform one CPU-bound task at any given time, regardless of the
number of threads.

But if a Thread had to wait on IO (network, or file IO), then other threads
could take over the CPU core, thus better utilizing the available CPU
resources.

SERVER MANAGER + WORKERS (VIA FORK)

MULTI-PROCESS

Puma HTTP Server:
in the Cluster Mode starts one master process, which then forks
multiple workers

SIDEKIQ Job Processing Framework (Enterprise Edition):
Provides a sidekiq cluster control process that manages multiple Sidekiq
Processes (also provided via sidekiq-pool ruby gem).

SERVER MANAGER + WORKERS (VIA FORK)

MULTI-PROCESS

Despite “copy on write” semantics of recent fork(), frequently forking sub-
processes is relatively slow and expensive.

That said, sometimes it makes sense, eg PostgreSQL forks a new process
for each connection, although it typically maintains a pool of idle
connections ready to work.

This is also because PostgreSQL developers actively use UNIX shared
memory segment called shared buffers.

KONSTANTIN GREDESKOUL AUGUST 2024

MEMORY ALLOCATION
IN THREADS

Context switching in a UNIX operating system refers to
the process of saving the state of a currently running
process or thread and restoring the state of another
process or thread so that the CPU can execute it.

This allows the operating system to manage multiple
processes and threads efficiently, even on a single CPU
core, by rapidly switching between them.

CONTEXT SWITCHING

KONSTANTIN GREDESKOUL AUGUST 2024

CPU CONTEXT SWITCHING

PRE-RUBY 3 SUMMARY
Thread.new { } starts a new native thread in Ruby, but it’s bound to a single CPU core.

Scheduling is performed by the OS Kernel, with some feedback from the programmer via
Thread.pass method.

Fiber.new { } starts a new fiber within a Thread, allowing the programmer to control which
Fiber gets the CPU at any given time.

To take advantage of multi-CORE hardware, we (ruby developers) had to:
Run Puma with many workers (multi-process concurrency)
Run many single-CPU core Docker containers (multi-container concurrency)
Run Puma and Sidekiq with # of threads > 1 to utilize time spent in disk and network IO

It worked (to saturate multiple cores), but it used a ton of memory.

KONSTANTIN GREDESKOUL AUGUST 2024

MOORE’S LAW?

Since the raw clock-speed of CPUs tapered off, manufacturers went
wide “horizontally” instead of “vertically”: constantly
increasing the number of CPU Cores that can execute concurrently.

That forced software industry to adapt to multi-core systems and to develop
new languages (such as Go & Rust) that are fully capable of usuing multiple

cores without the complexity penalty required by the previous generation of
concurrent constructs: such as the“pthread”C++ library.

JRuby could always use native threads and saturate all CPU cores.
MRI Ruby couldn’t do that until now.

1 Ruby 3 Came out
with Ractor 3We can finally saturate

all CPU cores with one
Ruby 3 process. Yay!

So even a Ruby
Programer can has many
CPU cores2

RUBY 3 FTW!!!
WARNER & SPENCER MARCH 2023KONSTANTIN GREDESKOUL AUGUST 2024

KONSTANTIN GREDESKOUL AUGUST 2024

RACTOR

LIKE A THREAD, BUT CAN’T SHARE ANYTHING

WHO THE HELL IS THIS TRACTOR?

Ractors are Ruby’s answer to true parallelism. Each Ractor
has its own separate memory and can run on a different CPU
core, bypassing the GIL. Communication between Ractors is
done via message-passing, ensuring isolation.

In that sense Ractors are like Services that send and receive
messages, but live inside a single Ruby Process.

Ractors are suitable for CPU-bound tasks that require parallel
execution across multiple cores while maintaining memory isolation.

Ruby 3 process with Ractors can finally SATURATE ALL CPU CORES.

Finally I can mine my Crypto using a single MRI Ruby Process....

ACTUALLY RACTORS CAN SHARE SOME
DATA: AS SHAREABLE OBJECTS

WHO THE HELL IS THIS TRACTOR?

Unlike Processes, Ractors CAN share some memory: the
can share so-called “Shareable Objects”.

Frozen constants are shareable.

Class and Module objects are shareable so the
Class/Module definitons are shared between ractors.

Ractor objects themselves are also shareable objects.

https://ruby-doc.org/core-3.0.2/Class.html
https://ruby-doc.org/core-3.0.2/Module.html
https://ruby-doc.org/core-3.0.2/Ractor.html

KONSTANTIN GREDESKOUL AUGUST 2024

EXAMPLES

SH
A

RE
D

M
ET

HO
DS

M
UL
TI
-P
RO

C
ES
S

M
UL
TI
-T
HR

EA
DE
D

M
UL

TI
-F
IB
ER

ES

FI
BE

RS
 W

IT
H

SC
HE

DU
LE

R

RA
C
TO
RS

HELPFUL GEMS

gem “async”

HELPFUL GEMS

gem ‘parallel’
now with ractor support

CONCLUSION
Use Processes when you need complete isolation between tasks
and want to utilize multiple CPU cores without worrying about
shared memory.

Use Ractors when you need to run CPU-bound tasks in parallel
across multiple cores within a single process, ensuring safe
concurrency without shared state issues.

Use Fibers for highly cooperative multitasking or when you need
to manage non-blocking IO operations efficiently without
parallelism.

Use Threads when you need lightweight concurrency within a
process, especially for IO-bound tasks, but be mindful of the GIL
and thread safety.

REFERENCES

KONSTANTIN GREDESKOUL AUGUST 2024

Concrrency: Threads, Fibers & Ractors
Introduction to Ractors in Ruby
My Adventure with Async Ruby
Ruby 3.3 Documentation: Ractor Class

https://www.visuality.pl/posts/concurrency-and-parallelism-in-ruby-processes-threads-fibers-and-ractors
https://blog.appsignal.com/2022/08/24/an-introduction-to-ractors-in-ruby.html
https://thoughtbot.com/blog/my-adventure-with-async-ruby
https://docs.ruby-lang.org/en/3.3/Ractor.html

KONSTANTIN GREDESKOUL AUGUST 2024

QUESTIONS?

THANK YOU!

KONSTANTIN GREDESKOUL AUGUST 2024

https://github.com/kigster — open source
https://twitter.com/kig — random thoughts
https://kig.re/ — blog
https://reinvent.one/ — consulting
https://youtube.com/@kigster — videos

https://github.com/kigster
https://twitter.com/kig
https://kig.re/
https://reinvent.one/
https://youtube.com/@kigster

