
Thread Safety
in Ruby and
Ruby on Rails
An overview of the concepts and best
practices for ensuring thread-safe code in
Ruby and Ruby on Rails applications.

by konstantin gredeskoul | february 2025

Introduction to Thread Safety

Ruby offers a class Mutex to provide synchronization
and to help manage access to shared resources,
ensuring thread safety.

Ruby developers can leverage concurrency patterns,
like the Reactor Pattern and the Actor Model, to design
thread-safe applications that handle concurrent
requests and tasks effectively.

There is only one provided thread-safe data structure
in Ruby: the class Queue, and its subclass SizedQueue.
The latter one will block on push() if the size is at the
limit.

Synchronization Techniques

Concurrency Patterns in Ruby

thread-safe data structures

Thread safety refers to the ability of a computer
program or application to execute correctly and
predictably when accessed by multiple threads or
fibers at the same time.

In Ruby and Ruby on Rails applications, thread safety
is crucial to ensure proper utilization of available CPU
cores, given that Ruby's GIL prevents more than one
operation on a given CPU core at any given time.

Shared resources, such as variables or objects, can lead
to race conditions when accessed by multiple threads,
resulting in data inconsistency or corruption. For
instance, the infamous ||= operator is not thread-safe.

What is Thread Safety?

Importance in Ruby and Ruby on Rails

Race Conditions

important
concurrency
notes Test Concurrent Code

GIL & MRI Ruby jruby or rubinius

key points

In MRI there is a global lock preventing true parallel
Ruby code execution. However, context switching
(especially when using sleep, I/O, or Thread.pass) can
still cause unexpected scheduling that leads to race
conditions in non-atomic read–modify–write
sequences.

When running on JRuby or Rubinius, there is no GIL
and so real parallelism across multiple cores can
occur, making race conditions even more likely to
appear.

Any test that relies on race conditions can be
somewhat nondeterministic. You might see tests pass
or fail sporadically. In real-world scenarios, you’ll want
to employ robust concurrency testing techniques
(stress tests, repeated runs, etc.) and properly use
synchronization constructs like Mutex, Queue, or
thread-safe data structures.

— Ruby MRI uses a Global Interpreter Lock (GIL)

— Only one thread can execute Ruby code at a time

— GIL doesn't protect against all thread safety issues

— I/O operations can run in parallel

— C extensions can bypass the GIL

There are two meanings of a "singleton class" in
Ruby:

�. It's a class that includes Singleton module

�. It's unique features of Ruby language that
allows adding behavior to a single instance of a
class (an object), the entire class, or a module.

To access object's singleton class, open the object
with instance_eval {} and then access its
singleton class with class << self; end

This is particularly useful when you need to
manage global state or provide a centralized
access point for shared resources, such as sub-
classes of a given superclass.

However, it's important to consider the thread
safety implications of using singleton classes, as
they can introduce potential issues if not
implemented correctly.

Ruby Singleton Classes

class / module
instance variables

Class-level Instance Variables

Immutable Class-level Instance Variables
One way to avoid thread safety issues is to make class-level instance
variables immutable. Immutable variables cannot be modified after
they are created, which eliminates the need for synchronization and
simplifies the code. In Ruby we can "freeze" the value to make it
immutable (however, it's also possible to unfreeze it).

What are Class-level Instance
Variables?
Class-level instance variables are
variables that are shared across all
instances of a class. They are defined at
the class level and can be accessed and
modified by any instance of the class.

Thread-local Storage
Another approach is to use thread-local storage, which provides a
way to associate data with a specific thread. This allows each thread
to have its own copy of the class-level instance variable, avoiding
the need for synchronization.

Thread Local storage is accessed via eg Thread.current[key] = value

Thread Safety Considerations
When working with class-level instance
variables, developers must be mindful of
thread safety. If multiple threads access
and modify the same class-level instance
variable concurrently, it can lead to race
conditions and unexpected behavior.

Synchronization Techniques
To ensure thread safety, developers can
use synchronization techniques such as
Mutex or Queue to control access to class-
level instance variables. This ensures that
only one thread can access the variable at
a time, preventing race conditions.

class variables

Class Variables

Using immutable class variables can help eliminate many thread
safety concerns, as immutable objects are inherently thread-safe.
However, this approach may not always be feasible, and other
synchronization techniques may be necessary.

Key reasons to avoid class variables:
They create hidden coupling between classes through inheritance
They're not thread-safe by default
They create global state which makes testing difficult
They can cause race conditions in concurrent environments
They make code harder to reason about and maintain
They can cause memory leaks if not properly managed

Immutable Class Variables

don't use class variables

Class variables are variables that are shared among all instances
of a class as well as sub-classes. They are defined at the class level
and can be accessed by both the class and its instances.

Class variables can pose thread safety challenges, as multiple
threads may attempt to access and modify the same class variable
simultaneously, leading to race conditions and potential data
corruption.

When multiple threads access a shared class variable, they are
operating on a shared state. Proper synchronization mechanisms
are required to ensure thread safety and prevent race conditions.

What are Class Variables?

Thread Safety Challenges

Shared State

Global Variables

Lack of Encapsulation

Potential for Unintended Modifications

Increased Likelihood of Concurrency Issues

Difficulty in Debugging

Thread-safe Data Structures in Ruby
Percentage of thread-safe operations supported

100%concurrent::Array

100%concurrent::Hash

100%queue

100%concurrent::map

Protecting Data from Parallel Write Access

Read-write locks allow
multiple threads to
read from a shared
resource
simultaneously, but
restrict write access to
only one thread at a
time, providing a
balance between
concurrency and data
protection.

For example, built-in
Queue class supports
this use-case, but it's
difficult to enforce
single-writer condition.

Read-Write
Locks

Mutex locks (mutual
exclusion) allow only
one thread to access a
critical section of code
at a time, preventing
race conditions and
ensuring data integrity
during concurrent write
operations.

Eg.
Mutex.new.synchronize
{ ... }

Mutex Locks

Transactional memory
is a concurrency
control mechanism
that allows multiple
threads to perform a
series of memory
accesses in an atomic,
isolated, and consistent
manner, similar to
database transactions.

While Ruby doesn't
support STM (software
transactional memory)
there is a proposal.

Transactional
Memory

Atomic operations
provide hardware-level
guarantees for
performing indivisible
read-modify-write
operations, ensuring
data consistency
without the need for
explicit locking
mechanisms.

Concurrent Ruby
offers Concurrent::Atom
class for this purpose
and several derivatives,
such as AtomicFixnum
and AtomicBoolean.

Atomic
Operations

Ruby doesn't have
built-in semaphores,
but the gem
concurrent-ruby gem
does.

Concurrent::Semaphore
is a signaling
mechanisms to control
access to a shared
resources by multiple
threads, allowing for
more fine-grained
concurrency control
compared to mutex
locks.

Semaphores

https://chrisseaton.com/truffleruby/ruby-stm/

Best Practices and Recommendations

Monitor Thread Execution
Regularly monitor and profile your application to identify
potential thread safety issues, such as deadlocks, livelocks, or
starvation. Use tools like rbspy or TracePoint to aid in this
process.

Utilize Reactive Programming
Consider using a reactive or actor-driven programming
approach, such as the Celluloid gem, to handle concurrency and
asynchronous tasks in a more declarative and thread-safe
manner.

Utilize Concurrent Ruby Gems
Leverage the Concurrent Ruby gem to
manage thread-safe data structures
and synchronization primitives,
ensuring thread safety in your
application.

Implement Mutex Locking
Use Mutex locking to protect critical
sections of your code that access
shared resources. This ensures that
only one thread can execute the critical
section at a time, preventing race
conditions.

Avoid Shared Mutable State
Minimize the use of shared mutable
state across threads, as this can lead to
race conditions and other concurrency
issues. Prefer immutable data
structures or use local variables within
thread-safe methods.

Thank you!
demo time

