
Riot Bazel Training
Day 1, Lectures 1 & 2

In the next two days you will learn how to use
Bazel to its fullest.

● The first day will be focused on Using
Bazel — we’ll talk mostly about existing
rules, features and languages. There are
four lectures covering this track.

● During the second day we will talk about
extending Bazel, in lectures 5-8. This will
require a look under the hood, leading
inevitably to Starlark programming. Let us
know if you get stuck anywhere. We are
here to help.

Course Outline

Schedule 1. Introduction to Bazel
2. Using Bazel
3. Building Java, Python, Protobufs
4. CLI and ToolingDay 1

Schedule 5. Starlark, Genrules, Macros
6. Writing Rules
7. Platforms and Toolchains
8. Remote Features, Packaging,

DeploymentDay 2

Day 1
Getting to Know Bazel

1. Introduction to Bazel

What is Bazel?

Bazel is an open-source build and test tool similar
to Make, Maven, and Gradle. Bazel supports
projects in multiple languages and builds outputs
for multiple platforms. It can handle codebases
containing thousands of applications, used by
thousands of developers daily.

● While Bazel supports many
popular programming languages
out the box, it can also be
extended with Starlark — a
Python-subset scripting language
used in BUILD and WORKSPACE
files and the extension libraries, I.e
files ending with *.bzl

● Today we’ll learn how to use Bazel.

● Tomorrow we’ll focus on extending
Bazel.

Was Bazel the answer, what would be the
question?

The question would likely be: “How do I get my software to build in a
highly consistent, always correct, and extremely fast way? Oh, and I
should probably also mention that I have ten thousand developers
working on a Petabyte-sized mono repo and committing an average of
five commits per second.” Right. Glad we cleared that up.

Pause for a moment to appreciate this massive achievement of software
engineering. Because — and this is exactly what Bazel does — it is a bit like
magic.

Luckily, using Bazel is much much easier than writing Bazel,
and over the next two days we hope you will feel comfortable

with Bazel to the extent that you are not only able to
confidently use it within your projects, but it becomes your

preferred method of building software of any kind.

1.1 Bazel in a Nutshell

Bazel Quick Intro

Bazel works best when you are using a
single large repository of source code that
may contain several applications,
potentially written in different languages.

You tell Bazel where the root of your
workspace is by placing a text file with
the name WORKSPACE there.

The file can be empty, and only one
WORKSPACE file is allowed per
repository.

Inside application folders you may
or may not place a BUILD file – a
similar text file that defines rules
relative to the directory it’s in.

NOTE: A directory with a BUILD file
is called a Package in Bazel
terminology, just like the directory
with a WORKSPACE file is called a
Repository.

Packages & BUILD files
● To enable Bazil in any source code repository,

you must create one WORKSPACE file at the
root, and as many BUILD files in each source
folder/sub-folders as necessary.

● Inside the BUILD files you define build targets in
your repo by invoking various rules (which are
basically build functions).

● Build targets are the smallest unit you can
declare a dependency on from someplace else.

● There are rules that know how to build
executable binaries and libraries using Java, C++,
Go. Other rules know how to run tests, build
docker images, etc.

While defining your targets you must also declare all of the
dependencies the target needs.

A really important design constraint of Bazel is this:

● External dependencies (interpreters, SDKs, libraries, etc) i.e —
anything that’s not inside the source tree, can only be
declared and loaded via the WORKSPACE file

● WORKSPACE file may invoke Bazel functions that actually
perform the download of external resources.

● BUILD files can not declare or fetch any external resources.

Targets, and Target’s Targets

Bazel Quick Facts

Bazel is written in Java and requires a valid JDK installed.

● When you run Bazel commands in a workspace, Bazel will start a server on the
background, anchored to that specific workspace.

● If you have another workspace, and you run Bazel commands there, another
server will be booted, potentially with a completely different configuration as
defined by the other workspace.

● It’s important to understand that multiple background Bazel servers rarely
interact with one another, and that they are attached to the workspace they were
started in.

1.2 Core Concepts

REPOSITORIES &
WORKSPACES
Repository is any directory on your filesystem that contains
the source files for the software you want to build, as well
as symbolic links to directories that contain the build
outputs.

Bazel Workspace is a directory that has a text file named
WORKSPACE at its root, which may be empty

● Nested workspaces are discouraged, although may be
required sometimes. When Bazel, running in one workspace,
finds a subdirectory containing a WORKSPACE file, Bazel skips
that directory entirely.

Directories containing file WORKSPACE are considered the
root of a repository, and are referenced as “@”

REPOSITORIES &
WORKSPACES, ctd.

The code is organized in repositories. The directory
containing the WORKSPACE file is the root of the main
repository, also called “@”. Other, (external) repositories
can be referenced in the WORKSPACE file using special
syntax.

Workspaces and repositories are very similar, but
there is a slight difference: workspaces must have a
WORKSPACE file at its root, while repositories do not,
and may include multiple workspaces.

WORKSPACE file — External Dependencies

The workspace rules are responsible for downloading, installing, and using
any and all external dependencies your project might have.

NOTE: As external repositories are repositories themselves, they often contain a
WORKSPACE file as well. However, these additional WORKSPACE files are ignored by
Bazel. In particular, repositories dependent upon transitively are not added
automatically to the current repository hierarchy, but their components are made
available via the load statement in the BUILD files. It’s conceptually similar to
TypeScript import statement.

Workspace example

workspace(name = “donut_project”)

load("http.bzl", "http_archive")

http_archive(
 name = “flour”,
 urls = [“https://github.com/flour.tar.gz”],
 sha256 = “123456789”,
)

PACKAGES

The primary unit of code organization within a
repository is the package.

A package is a collection of related files and a
specification of the dependencies among
them.

Practically, a package is defined as a directory
containing a file named BUILD or BUILD.bazel,
residing beneath the top-level directory in the
workspace.

A package includes all files in its directory, plus
all subdirectories beneath it, except those
which themselves contain a BUILD file.

PACKAGE EXAMPLE

For example, in the following directory tree
(presumed to be nested inside a Workspace):

src
└── my
 └── app
 ├── BUILD
 ├── app.cc
 ├── data
 │ └── input.txt
 └── tests
 ├── BUILD
 └── test.cc

● There are two packages, my/app, and
the subpackage my/app/tests.

● Note that my/app/data is not a
package, but a directory belonging to
package my/app.

BUILD file Example

flavors/BUILD

java_binary(
 name = “chocolate”,
 srcs = [“Chocolate.java”],
 main_class = “flavors.Chocolate”,
)

Targets

● A BUILD file (and a corresponding package) consists of zero or more
targets.

● Each call to a build rule returns no value but has the side effect of
defining a new target; this is called instantiating the rule.

● There three kinds of targets:

○ Files

○ Rules

○ Package Groups

Targets — Files

● Source files are usually written by the efforts of people, and
checked in to the repository.

● Generated files, sometimes called derived files, are not
checked in, but are generated by the build tool from source
files according to specific rules.

Files are further divided into two kinds:

Target Visibility

An important property of all Rules is that the files generated by a rule always belong to
the same package as the rule itself.

In other words — it is not possible to generate files into another package.

It is not uncommon for a rule's inputs to come from another package, though.

Package groups are sets of packages whose purpose is to limit accessibility of certain
rules. Package groups are defined by the package_group function. They do not generate
or consume files.

They have two properties:

1. the list of packages they contain
2. and their name.

Labels — A Target’s Name

In Bazel labels refer to:

● They refer to a name of a target,
and a particular syntax used to
reference it.

● Label is also a proper Class in
Bazel and can be instantiated
and passed around as an
argument.

A good way to think of a label is that
of a postal address: Label provides a
public address for all targets.

Not all labels are accessible from
another package because of the
visibility constraints.

Labels uniquely identify each target within the
current package, current workspace, and even
across multiple repositories. Structurally, a
package contains zero or more targets.

Anatomy of a Label

@bowls//sizes/large/blue:ice_cream_bowl

Optional repository name

A root of a repository

The package

The target

Labels — Canonical Form of a Label

Target’s name is a label, and a typical label in
canonical form looks like this:

@myrepo//my/app/main:app_binary

In the typical case that a label refers to the
same repository it occurs in, the repository
name may be left out.

So, inside @myrepo this label is usually
written as

//my/app/main:app_binary

Each label has two parts, a package name
(my/app/main) and a target name
(app_binary).

Every label uniquely identifies a target.

Labels sometimes appear in other forms;
when the colon is omitted, the target
name is assumed to be the same as the
last component of the package name, so
these two labels are equivalent:

//my/app:app
//my/app
//:app

Labels ctd. —Labels within a BUILD file
Within a BUILD file, the package-name part of the label may be omitted, and optionally the colon too.
So within the BUILD file for package my/app (i.e. //my/app:BUILD), the following "relative" labels are all
equivalent:

//my/app:app
//my/app
:app
app

NOTE: It is a matter of convention that the colon is omitted for files, but retained for rules, but it is not
otherwise significant.

Similarly, within a BUILD file, files belonging to the package may be referenced by their unadorned name
relative to the package directory:

generate.cc
testdata/input.txt

Labels, ctd.— Main Repo & Querying

● Labels starting with @// are references to the main repository,
which will still work even from external repositories.

● Therefore @//a/b/c is different from //a/b/c when referenced
from an external repository.

● The former refers back to the main repository, while the latter
looks for //a/b/c in the external repository itself.

● This is especially relevant when writing rules in the main
repository that refer to targets in the main repository, and will
be used from external repositories.

With query command you can easily
introspect and successfully reason
about functionality of any part of a
mono repo, written in any language.

Since labels are language
independent, they offer a unique
interface into application
subsystems but from the build
perspective, documenting code
organization, instead of the code API.

Rules & Actions

● Bazel Rules are made up of many Actions.

● Actions take a set (which can be empty) of input files and generate a
(non-empty) set of output files. The set of input and output files must be
known during the analysis phase.

● The output of an action must only depend on the explicitly stated inputs.
All actions should be hermetic, isolated from all but explicit dependencies

● Rules are defined in starlark

Rules & Actions

Bazel Build Phases:
1. Loading Phase: Parse and instantiate all the rules, create the

Target Graph

2. Analysis Phase: Calculate the Action Graph, and compute
hashes of inputs to look up in the cache and see what needs to
be rebuilt.

3. Execution Phase: Run the minimum number of actions to
recompute the final result.

Build Phases

Configuration
(e.g. bazelrc)

Rule definition
(e.g. cc_binary)

BUILD file Target + deps

Configured
target + deps

Action + deps

In-memory graph maintained by Bazel

External state

//foo:bar
//foo:baz

cc -c bar.m -o bar.o
cc -o app *.o

Rules & Actions: pkg_tar
The action to create a tarball in pkg_tar looks like this:

ctx.actions.run(
 executable = ctx.executable.build_tar,
 inputs = file_inputs + ctx.files.deps + [arg_file],
 arguments = ["--flagfile", arg_file.path],
 outputs = [ctx.outputs.out],
)

● ctx is the context of the rule.
● ctx.actions is how you register an

action to a rule
● ctx.actions.run is an action that

calls a script

● executable is a reference to the build_tar script
to be run.

● inputs are all files needed to run this script.
● arguments are sent to the executable.
● outputs are all files this action generates.

Hermeticism

For something to be hermetic means “impervious to external
influence”.

It follows that for a build system to be hermetic, it should be “sealed
airtight”, i.e. unaffected by external (to the build) influences.

Rules & Actions: Hermeticism

Explicit inputs & outputs = speed & correctness. How?

1. Caching — local or remote, for each artifact and result of an action

2. Parallel Remote Execution — ability to spread the build actions across a build farm

3. Minimum work to rebuild — Bazel computes the list of nodes that must be rebuilt using
the declared inputs, and the directed action graph it compiles during the analysis phase

4. Deterministic builds — build steps produce the same result (with an identical SHA)
regardless of when they run, or which machine they run on

5. Conversely, build steps produce a new result every time their inputs change

6. Build steps that are hermetic can be cached and reused, with their content’s SHA acting
as a Cache Key

Rules & Actions: Sandboxing

Bazel uses Sandboxing to enforce hermeticity:

● Starlark is prohibited from arbitrary I/O

● Processes are run with sandbox-exec on macOS and limited privileges (no
network, etc)

● Tools are run in isolation to ensure they’re only operating on declared inputs,
and undeclared outputs don’t affect future actions

Directed Acyclic Graphs (DAGs) & Bazel

● During the loading phase, Bazel computes a target dependency graph which
is used in the analysis phase

● During analysis, Bazel computes the action graph

● A Merkle tree is created:

○ Files are the leaf nodes and are digested using their corresponding content;

○ Directories are the tree nodes and are digested using digests from their
subdirectories and children files

○ SHA256 hashing is often used but this can be customized

○ Merkle tree nodes are immutable. Any change in a node would alter its identifier
and thus affect all the ascendants in the DAG, essentially creating a different DAG

Caching

● All inputs and outputs are hashed and accessible by the digest of the
content itself.

● This is often referred to as CAS: Content Addressable Storage.

● Thanks to this mechanism, it’s possible to implement shared,
distributed build caches that greatly reduce build times for developers
and CI machines

● BMW saw 10x speed up in their unit test times and 12x speed up in build times with bazel remote cache and execution.
● Braintree: they’ve been suffering from slow and sluggish Gradle builds and they report various improvements after

switching to bazel: half test time, 10x clean builds, etc.
● Databricks reports increased build stability, 10x decrease in time. They also successfully use bazel for k8s deployments
● Dataform: 6x faster CI builds.
● Google/OSS:

○ Angular test times reduced from 1 hour to 15 minutes
○ Android Studio: better scalability allows them to run full tests at every commit
○ Tensorflow: average build times decreased by 80%; Dedicated CI hardware reduced by 80%;

● LinkedIn migrated 2 iOS applications and saw ~50% incremental build time decrease and 6x clean build time decrease. They
are only using caching, so when they turn on remote execution, they are likely to see even better results.

● Pinterest iOS build time dropped from 4 minutes to under a minute, sometimes as low as 30 seconds.
● Redfin saw 10x build speed up when they migrated from maven to bazel.
● Stripe is happy about build reproducibility, they have also seen 3x reduction in their build times.
● SpaceX: reproducibility of the build is what matters most for them.
● Wix: 90% reduction in build time.

You’re in good company!

First Lab - Repo Setup

● Download and extract labs repo

○ or clone with git clone https://github.com/flarebuild/training-labs-templates.git

● Run scripts/setup (if bazelisk isn’t installed and in your path)

● If you prefer to use VSCode —

○ download it, install,

○ and make sure you have the code shortcut configured/installed

■ Press ⇧⌘P (Command-Shift-P) to bring up the "Show All Commands" drop down, and search for
"code"

■ Select Shell Command: Install 'code' in your PATH and press ENTER.

○ Then run:
cd .vscode && make install

https://drive.google.com/file/d/1fZrydkYpg-UX6nP282-jiRFCYuBcpUbw/view?usp=sharing

2. Using Bazel

Invoking Bazel
Bazel is implemented as a client-server

application

● The Bazel system is implemented as a long-lived server
process.

○ This allows it to perform many optimizations
not possible with a batch-oriented
implementation, such as caching of BUILD files,
dependency graphs, and other metadata from
one build to the next.

○ It massively improves the speed of incremental
builds, and allows different commands, such as
build and query to share the same cache of
loaded packages, making queries very fast.

Bazel Client & Server

Client
● When you run bazel, you’re running the

client

● The client finds the server based on the
output base, which by default is
determined by the path of the base
workspace directory and your user id

● If the client cannot find a running server
instance, it starts a new one

Server

● If you build in multiple workspaces, you’ll
have multiple output bases and thus
multiple Bazel server processes

● Multiple users on the same workstation
can build concurrently in the same
workspace because their output bases
will differ (different users)

● The server process will stop after a period
of inactivity (3 hours, by default, which
can be modified using the startup option
--max_idle_secs).

Persistent Workers

● In addition to the long-running Bazel server, many compilers are also implemented using
Bazel’s persistent worker mechanism to ensure no time is wasted starting up
slow-booting compilers.

● This is important because in Bazel, every action is invoked in a separate process, meaning
thousands of calls to javac for a large application.

● Adding a persistent worker for javac increased build times for java applications by
approximately 4x.

● Controlling the spawn strategy of workers can be accomplished via the flag --strategy.

Rules In Depth

A refresher:

A rule specifies the relationship between inputs and outputs, and the steps
to build the outputs.

Rules can be of one of many different kinds or classes.

Rules typically produce compiled executables and libraries, test executables
and other supported outputs as described in the Build Encyclopedia.

Rules In Depth: Names

● Every rule has a name, specified by the name attribute, of type string.

● The name must be a syntactically valid target name.

● In some cases, the name is somewhat arbitrary, and more interesting are
the names of the files generated by the rule; this is true of genrules. In
other cases, the name is significant: for binary and test rules, for example,
the rule name determines the name of the executable produced by the
build.

Rules In Depth: Attributes

● Every rule has a set of attributes; the applicable attributes for a given rule,
and the significance and semantics of each attribute are a function of the
rule's class.

● Each attribute has a name and a type.

● Some of the common types an attribute can have are integer, label, list of
labels, string, list of strings, output label, list of output labels.

● Most rules define 3 types of dependencies: src, deps, and data, as well as
additional common attributes shared by all rules on top of the rule’s unique
attributes.

Rule Types

● Workspace Rules (also known as
Repository Rules)

● Rules used in BUILD files can be of the
following three broad types:

○ Build Rules
— rules that create build artifacts

○ Run Rules
— rules that execute binaries and
scripts

○ Test Rules
— rules that run tests

● Native rules are rules built
into Bazel itself, such as
cc_binary, or java_library
(but see a comment in the
following slides).

● Non-native rules are the ones
that require an external
download, and activation (via
the WORKSPACE file)

Workspace Rules

● Workspace rules are the only place in the Bazel workspace where
you can define, download, and install external dependencies.

● Using git pull of any commit or a branch, or via https, or even
ftp/sftp — it’s possible to fetch an external dependency and
verify its sha256sum.

Build Rules

Build rules are rules that are instantiated in BUILD files and describe targets corresponding to source files
in the workspace—typically compiler invocations, etc.

load("@rules_java//java:defs.bzl", "java_binary")

java_binary(
 main_class = "com.flarebuild.hello.Hello",
 name = "hello",
 srcs = ["Hello.java"],
)

This java_binary rule defines a target with a name “hello” which takes source code asan input and
produces a jar when invoked with bazel build. It’s also an executable rule which can be run with bazel run.

Native Rules

Native rules are shipped with the Bazel binary and are always available in
BUILD files without a load statement.

In the case of language-specific rules, some of which were previously
native, the current trend is to move them to individual packages as
can be seen with java and C++ rules which are now loaded from
packages.

Native Rule: Filegroup

Use filegroup to give a convenient name to a
collection of targets. These can then be
referenced from other rules.

Using filegroup is encouraged instead of
referencing directories directly. The latter is
unsound since the build system does not have
full knowledge of all files below the directory,
so it may not rebuild when these files change.

When combined with glob, filegroup can ensure
that all files are explicitly known to the build
system.

filegroup(
 name = "foo_bar",
 srcs = [
 "foo.txt",
 "bar.txt",
],
)

https://docs.bazel.build/versions/master/be/functions.html#glob

Native Rule: Alias

As the name suggests, you can use this rule to create a new name for an existing
rule. This can be a rule in the same package, or in another package.

alias(
 name = "foobar_alias",
 actual = ":foo_bar",
)

Native Rule: Genrule

A genrule rule generates one or more files using a user-defined Bash command.

General rules are typically generic build rules that you can use if there's no specific rule
for the task.

genrule(
 name = "create_baz",
 outs = ["baz.txt"],
 srcs = [],
 cmd_bash = "echo baz > $@"
)

This genrule invokes the bash command specified, creating the defined output. If the
bash command invoked didn’t create a file, this would fail to build. Note that Bazel
expands $@ into the single output (baz.txt, in the expected path). More on this later.

ConfigSetting & Select
Configurable attributes, commonly known as select(), are a Bazel feature that lets users toggle the
values of BUILD rule attributes at the command line.

config_setting(
 name = "bar_config",
 values = {
 "define": "word=bar",
 },
)

config_setting(
 name = "baz_config",
 values = {
 "define": "word=baz",
 },
)

filegroup(
 name = "foo_bar_or_baz",
 srcs = [
 "foo.txt",
] + select({
 ":bar_config": ["bar.txt"],
 ":baz_config": ["baz.txt"],
 "//conditions:default": ["bar.txt"],
 }),
)

$ bazel build //:foo_bar_or_baz --define word=bar

ConfigSetting & Select, ctd.
Configurable attributes, commonly known as select(), are a Bazel feature that lets users toggle the
values of BUILD rule attributes at the command line.

config_setting(
 name = "bar_config",
 values = {
 "define": "word=bar",
 },
)

config_setting(
 name = "baz_config",
 values = {
 "define": "word=baz",
 },
)

More examples:

● bazel build //:foo_bar_or_baz --define word=bar

○ bar.txt is included in srcs of the filegroup

● bazel build //:foo_bar_or_baz --define word=bar

○ baz.txt is included

● bazel build //:foo_bar_or_baz

○ bar.txt is included, as it’s the default of the select()

IDE
Integration:
VSCode

IDE
Integration:
IDEA

IDE Integration: IDEA

● The plugin offers Bazel support in the IDE, but in order to enable it, a project must
first be "imported" as a Bazel project; this creates a .bazelproject “project view”
file in .ijwb project folder. This is commonly in gitignore, and a shared project view
file is typically committed in project/.bazelproject.

● If you’re starting with a shared .bazelproject, you’ll want to be sure to import
this file; the contents will then be cloned to your local .bazelproject copy.

● There’s a wide range of things that can be done in this .bazelproject file to
enhance the experience of using Bazel in the IDE outside of what is possible with
Bazel configuration and tags themselves, and there are additional IDEA-only tags
that can be applied to targets to change plugin behavior per target using Bazel’s
built in tag mechanism.

Installing Bazel IntelliJ IDEA Plugin

The simplest way to install the plugin is to find it in
the Plugin Marketplace, and install from there.

However, sometimes the plugin is behind the most
recent version of the IntelliJ IDE, and in these cases
you have two choices:

● Rollback IDE to a previous version

● Or, build the plugin from sources
https://bit.ly/bazel-idea-build

https://kig.re/2020/03/21/building-intellij-bazel-plugin.html
https://bit.ly/bazel-idea-build

IDEA Plugin Features
The plugin allows you to:

● Compile your project and get navigable compile errors in the IDE.

● Run lint from within the IDE with navigable issues.

● Support for IDEA run configurations for any executable Bazel rule.

● Run tests from within the IDE by right-clicking on methods/classes, with deep JUnit integration

● BUILD file and .bzl (starlark) language support.

● CTRL/CMD click to navigate to targets

● Live templates & autocompletion/intellisense in BUILD & bzl files for all rules, custom or native

● Synchronization of source with Bazel, allowing proper imports, autocompletion, and syntax
highlighting in 8+ supported languages

Lab: labs/lab2.md

Lab 2.1 - Bazel Hello World
1. Create a BUILD file for hello world java application
2. Create a BUILD file for hello world python application

Lab 2.2 - PySpark
● Create BUILD and bzl files for PySPark/dataproc

