
Riot Bazel Training
Day 1, Lectures 3 & 4

Schedule 1. Introduction to Bazel
2. Using Bazel
3. Building Java, Python, Protobufs
4. CLI and ToolingDay 1

4. Building Java, Python, Protobufs
with Bazel

3.1
rules_jvm_external

Motivation

Rules jvm external make it easy to use any maven dependency, In this example we
will. This is the only good way to get 3rd party dependencies from “maven central”
or jcenter or other maven artifact repositories; in this case when they say maven
they mean “java modules”.

By using rules_jvm_external, bazel downloads 3rd party JARs and lets you depend
on them as deps in your libraries and correctly links them up in the classpath at
compile time (and even lets you navigate to code in idea).

Any and all real-world JVM projects should use rules_jvm_external to get any 3rd
party dep they use

Setting up WORKSPACE

RULES_JVM_EXTERNAL_TAG = "3.3"
RULES_JVM_EXTERNAL_SHA = "d85951a92c0908c80bd8551002d66cb23c3434409c814179c0ff026b53544dab"

http_archive(
 name = "rules_jvm_external",
 sha256 = RULES_JVM_EXTERNAL_SHA,
 strip_prefix = "rules_jvm_external-%s" % RULES_JVM_EXTERNAL_TAG,
 url =
 "https://github.com/bazelbuild/rules_jvm_external/archive/%s.zip" %
 RULES_JVM_EXTERNAL_TAG,
)

Import maven_install()
Note the location of maven_install.json

load("@rules_jvm_external//:defs.bzl", "maven_install")
load("@rules_jvm_external//:specs.bzl", "maven")

maven_install(
 name = "maven",
 artifacts = [], # maven dependencies come here
 maven_install_json = "//:maven_install.json",
 repositories = [
 "https://jcenter.bintray.com/",
 "https://maven.google.com",
 "https://repo1.maven.org/maven2",
],
)

● Private repositories are supported through HTTP Basic auth
Eg: "http://username:password@localhost:8081/artifactory/my-repository",

Use pinned_maven_install()

Use pinned_maven_install to “pin” your downloaded and transitive
dependencies versions

load("@maven//:defs.bzl", "pinned_maven_install")

pinned_maven_install()

Defining Dependencies —
pom.xml to maven_install()

<dependency>
<groupId>com.github.scopt</groupId>
<artifactId>scopt_2.11</artifactId>
<version>4.0.0-RC2</version>

</dependency>

Should be defined as following in artifacts[] of maven_install():

 artifacts = [
 "com.github.scopt:scopt_2.11:4.0.0-RC2",
],

Defining Dependencies:
pom.xml to maven_install()

<dependency>
<groupId>com.github.scopt</groupId>
<artifactId>scopt_2.11</artifactId>
<version>4.0.0-RC2</version>

</dependency>

Alternatively, can be defined as maven.artifact, so we can gain more control over artifacts:
 artifacts = [
 maven.artifact(
 "com.github.scopt",
 "scopt_2.11",
 "4.0.0-RC2",
 testonly = True,
),
],

Generate maven_install.json

Change dependencies:

$ bazel run @unpinned_maven//:pin

Commands to work with maven dependencies:

Pin dependencies:

$ bazel run @maven//:pin

Using Dependencies:
pom.xml to BUILD.bazel

<dependency>
<groupId>com.github.scopt</groupId>
<artifactId>scopt_2.11</artifactId>
<version>4.0.0-RC2</version>

</dependency>

Should be defined as following in target’s deps in BUILD.bazel:

"@maven//:com_github_scopt_scopt_2_11",

Lab
rules_jvm_external

Objective:

Build a java library, which will depend on
org.apache.commons.math3.complex.Complex

Additionally, build and run tests for the
library.

Functionally:

It takes 2 real numbers as input and
returns a pretty printed complex number.

3.2
rules_python_external

Motivation

rules_python_external should be used as a drop in replacement for the python rules in all
instances of use. It has the same API, but addresses most of packaging issues and a number
of other things which currently broken in the official rules bazelbuild/rules_python

They solve

● Transitive dependency resolution

● Minimal runtime dependencies

● Support for spreading purelibs

● Support for namespace packages

● Fetches pip packages only for building Python targets

● Reproducible builds

https://github.com/dillon-giacoppo/rules_python_external
https://github.com/bazelbuild/rules_python
https://www.python.org/dev/peps/pep-0491/#installing-a-wheel-distribution-1-0-py32-none-any-whl
https://packaging.python.org/guides/packaging-namespace-packages/

Setting up WORKSPACE
rules_python_external_version = "0.1.5"

http_archive(
 name = "rules_python_external",
 sha256 = "", # Fill in with correct sha256 of your COMMIT_SHA version
 strip_prefix = "rules_python_external-{version}".format(
 version = rules_python_external_version
),
 url = "https://github.com/dillon-giacoppo/rules_python_external/archive/v{version}.zip".format(
 version = rules_python_external_version
),
)

Install the rule dependencies
load("@rules_python_external//:repositories.bzl", "rules_python_external_dependencies")
rules_python_external_dependencies()

https://github.com/dillon-giacoppo/rules_python_external/archive/v%7Bversion%7D.zip%22.format

Import pip_install()

load("@rules_python_external//:defs.bzl", "pip_install")

pip_install(
 name = "pip",
 requirements = "//:requirements.txt",
)

Python Dependencies — Importing
Adding the “pip install”:

load("@rules_python_external//:defs.bzl", "pip_install")
pip_install(
 name = "pip",
 requirements = "//:requirements.txt",
)

Create requirements.txt file and define dependencies:

numpy==1.19.1
pandas==1.1.0
tensorflow==2.3.0
matplotlib==3.1.2
Pillow==7.2.0

Python Dependencies — Referencing

In order to reference and use the dependencies:

load("@pip//:requirements.bzl", "requirement")

py_binary(
 deps = [
 requirement("tensorflow"),
],
)

Lab
rules_python_external

Objective:

Build a python application, which depends
on tensorflow, numpy and other data
science libraries. Additionally, build and
run test for the application.

Functionally:

Using a pre-trained keras model,
application takes as an input the image
from test set and outputs prediction and
expected tag for the image.

3.3. Using Protobuf for Java and Python
with Bazel

Motivation

Protocol buffers are Google's language-neutral, platform-neutral, extensible
mechanism for serializing structured data.

Once declared in *.proto files, they can be compiled to specific languages. Set of
rules supporting protobufs in bazel is called rules_proto.

However, as we will see further, rules_proto don’t support all languages, so we
will also look at rules_proto_grpc as an example of external rules we will use to
support proto in python.

https://github.com/bazelbuild/rules_proto

Setting up WORKSPACE

http_archive(
 name = "rules_proto",
 sha256 = "602e7161d9195e50246177e7c55b2f39950a9cf7366f74ed5f22fd45750cd208",
 strip_prefix = "rules_proto-97d8af4dc474595af3900dd85cb3a29ad28cc313",
 urls = [

"https://mirror.bazel.build/github.com/bazelbuild/rules_proto/archive/97d8af4dc474595af3900dd85cb3a29ad28c
c313.tar.gz",

"https://github.com/bazelbuild/rules_proto/archive/97d8af4dc474595af3900dd85cb3a29ad28cc313.tar.gz",
],
)

load("@rules_proto//proto:repositories.bzl", "rules_proto_dependencies", "rules_proto_toolchains")

rules_proto_dependencies()

rules_proto_toolchains()

Using rules_proto rules

load("@rules_proto//proto:defs.bzl", "proto_library")

proto_library(
 name = "sample_proto",
 srcs = [":sample.proto"],
)

● proto_library outputs compiled protobuf *.bin, which is used in
language-specific proto libraries

● You may notice that it takes a while to build it for the first time, this is
because bazel had to pull a protobuf compiler itself.

Using Generated Code

load("@rules_java//java:defs.bzl", "java_proto_library")

java_proto_library(
 name = "sample_proto_java",
 deps = [":sample_proto"],
)

Once protobuf file if compiled, we can proceed and define it as
dependency to java_proto_library target “sample_proto_java”. This
code needs to reside in proto repository, since it can be reused by
multiple java repositories.

Using Generated Code, ctd.

java_binary(
 name = "sample",
 srcs = ["sample.java"],
 deps = [
 "//src/main/proto:sample_proto_java",
],
)

Now sample_proto_java can be used in java_binary to provide
access to generated proto code.

Complications with Python Proto

java_proto_library is a part of rules_java, but Bazel doesn’t support
python proto by default. As a result python rules for working with
compiled proto should be pulled from external source.

To learn which proto rules are included in Bazel by default:
see Build Encyclopedia.

https://docs.bazel.build/versions/master/be/overview.html

Setting up WORKSPACE — Python

http_archive(
 name = "rules_proto_grpc",
 sha256 = "5f0f2fc0199810c65a2de148a52ba0aff14d631d4e8202f41aff6a9d590a471b",
 strip_prefix = "rules_proto_grpc-1.0.2",
 urls = ["https://github.com/rules-proto-grpc/rules_proto_grpc/archive/1.0.2.tar.gz"],
)

load("@rules_proto_grpc//:repositories.bzl", "rules_proto_grpc_repos", "rules_proto_grpc_toolchains")

rules_proto_grpc_toolchains()

rules_proto_grpc_repos()

Using Generated Code

load("@rules_proto_grpc//python:defs.bzl", "python_proto_library")

python_proto_library(
 name = "sample_proto_python",
 deps = [":sample_proto"],
)

Similar to java, now we need to use python_proto_library to make
compiled proto available.

Using Generated Code, ctd.

py_binary(
 name = "sample",
 srcs = ["sample.py"],
 deps = [
 "//src/main/proto:sample_proto_python",
],
)

Now sample_proto_python can be used in py_binary target to provide
access to generated proto code.

Package & Target Visibility
By default, targets can depend only to targets in the same package, since proto is typically a separate
repo, it’s important to reiterate on the concept of visibility. Visibility can be defined on package or target
level:

package(default_visibility = ["//visibility:private"])
load("@build_bazel_rules_typescript//:defs.bzl", "ts_library")

ts_library(
//omitted

)

python_proto_library(
 name = "sample_proto_python",
 visibility = ["//src/main/python/sample:__pkg__"],
 deps = [":sample_proto"],
)

Package & Target Visibility

["//visibility:public"]

Anyone can use this. This visibility should be
considered to be a public API and should not be used
unless we do intend to expose a public API from
workspace/repo.

["//visibility:private"] Only targets in this package can use this

["//some/demo_package:__pkg__", "//other/package:__pkg__"] Only targets in some/package and other/package
have access to this

["//my_project:__subpackages__", "//other:__subpackages__"] Only targets in packages project or other or in one of
their sub-packages have access to this

["//some/demo_package:my_package_group"] A package group is a named set of package names

Lab
Using Protobuf for Java

and Python
with Bazel

Objective:

Compile protobuf.proto definition and
use it in java and python code

4. CLI & Tooling

4.1. Build Querying

Asking Bazel Questions — Query Types

query queries target graph, the output of loading phase

sky query an alternative implementation of query

cquery queries configured target graph (correctly handles select())

aquery queries action graph

genquery general bazel rule to run queries and save result to a file

Useful Queries
● List all packages in a workspace

bazel query '//...' --output package

● List all rules in a workspace
bazel query 'kind(rule, //...)' --output label_kind

● Find all dependencies of //packages/core
bazel query "deps(//packages/core)"

● More queries in labs...

Java Proto Example Dependencies

$ bazel query 'deps(//src/main/java/com/flarebuild/message:main)' --notool_deps
--noimplicit_deps --output graph | dot -Tpng > /tmp/test.png

4. 2 Execution Log & Profiling

Execution Log

The execution log can be used to list all Bazel’s executed actions, along with all inputs and outputs.
Useful to collect analytics or, for example, it may be helpful to troubleshoot remote cache hits (see
Chapter 8).

Currently, Bazel supports 3 types of flags to produce log files:

bazel build //your:target --execution_log_json_file=/tmp/log.json

bazel build //your:target --execution_log_binary_file=/tmp/log.bin

bazel build //your:target --experimental_execution_log_file=/tmp/log.txt

https://docs.bazel.build/versions/master/remote-execution-caching-debug.html

Execution Log
command_args: "bazel-out/darwin-opt/bin/external/libjpeg_turbo/_objs/jpeg/jcmaster.o"
environment_variables {
 name: "APPLE_SDK_PLATFORM"
 value: "MacOSX"
}//omitted
inputs {
 path: "bazel-out/darwin-opt/bin/external/libjpeg_turbo/jconfig.h"
 digest {
 hash: "317659a520922996ac746b3c589c441148eccfacdf58e66bc1100593b65ec3c5"
 size_bytes: 1985
 hash_function_name: "SHA-256"
 }
}//omitted
listed_outputs:
"bazel-out/darwin-opt/bin/external/libjpeg_turbo/_objs/jpeg/jcmaster.o"
remotable: true
cacheable: true
progress_message: "Compiling external/libjpeg_turbo/jcmaster.c"
mnemonic: "CppCompile"
actual_outputs {
 path: "bazel-out/darwin-opt/bin/external/libjpeg_turbo/_objs/jpeg/jcmaster.o"
 digest {
 hash: "7ba7e5fc36d77d7f8a17fd1285db462a69c054482998625461fcef5f055752cb"
 size_bytes: 8572
 hash_function_name: "SHA-256"
 }
}
runner: "remote cache hit"
remote_cache_hit: true

● This is an example of information
available in execution log. It contains
extensive info about executed actions:

○ Inputs, outputs, whether action
result was cached and much more

○ Full log format is described in the
protobuf scheme called
'spawn.proto'

https://github.com/bazelbuild/bazel/blob/master/src/main/protobuf/spawn.proto

Profiling
Profiling is useful for finding build and test bottlenecks

Bazel writes a JSON profile which can be later opened with Chrome

$ bazel build //.... --profile=/tmp/profile.gz

4. 3 Command-line Flags (options)

Command-line Flags — Introduction

bazel [build|run|test|query] [flags] -- [target patterns]

● Reference Documentation:
https://bit.ly/bazel-cli-ref

https://bit.ly/bazel-cli-ref

Useful Flags

Sometimes it is useful to try to build as much as possible even in the face of
errors. This option enables that behavior, and when it is specified, the build
will attempt to build every target whose prerequisites were successfully
built, but will ignore errors.

This option causes Bazel's execution phase to print the full command line for
commands that failed. This can be invaluable for debugging a failing build.

Useful for debug sandboxed build invocation, sandbox state will not be
erased after call

On clean ci build, better set to false, it can save memory & disk space

--keep_going

--verbose_failures

--sandbox_debug

--[no]use_action_cache

Useful Flags, Ctd.

--[no]remote_upload_local_results

--remote_download_minimal

--output_base=dir

--[no]build

Better set to false, it will not upload possibly huge local files (like java
platform classpath jars) to remote cache.

Do not download intermediate results from remote cache

Override the default output directory (which will be placed into /var/tmp).
Useful to debug output artefacts produced by the build.

Causes the build to stop before executing the build actions, returning zero
iff the package loading and analysis phases completed successfully; this
mode is useful for testing those phases.

4. 4 Tooling

.bazelrc
For project-specific options, use the configuration file your

<workspace>/.bazelrc (see bazelrc format).

Bazel looks for optional configuration files in the following locations, in the order
shown below:

● /etc/bazel.bazelrc
● %workspace%/.bazelrc - in workspace root
● $HOME/.bazelrc
● --bazelrc=file cmd line flag

https://docs.bazel.build/versions/master/guide.html#bazelrc

.bazelrc, ctd.
● You can load another RC file with import and try-import

try-import %workspace%/user.bazelrc

● You can add default options for commands with

build --default_option1
build --default_option2
...

● You can add option groups which are enabled by a shorthand switch
--config=group_name

build:group_name --default_option3
build:group_name --default_option4
...

Useful Tools
● Bazelisk

○ Bazel Launcher, provides a way to use specific Bazel

version (with .bazelversion file in a workspace)

● Buildifier

○ A formatting tool for bazel BUILD and .bzl files, can be

executed as a run rule

Buildifier
Buildifier applies standard formatting to the named Starlark files.
● Can run directly on a command line or as a Bazel Target

● Can warn about any inconsistencies, or auto-fix some of them

Example:

$ find . -name 'BUILD*' -exec buildifier {} \;

CLI Usage:

buildifier [-d] [-v] [-r] [-diff_command=command] [-help]
 [-multi_diff] [-mode=mode] [-lint=lint_mode] [-path=path] [files...]

Buildifier
Buildifier also has a corresponding Bazel rule you can invoke:

Bazel BUILD file usage:
load(

"@com_github_bazelbuild_buildtools//buildifier:def.bzl",
"Buildifier"

)

buildifier(name = "buildifier-lint-fix", lint_mode = "fix")

buildifier(name = "buildifier-lint-warn", lint_mode = "warn")

Example:

$ bazel run :buildifier-lint-fix

4. 5 Nuking

Useful Nuking Commands
● bazel clean

— delete all outputs in dist/bin

● bazel clean --expunge
— same as above plus deleting external repos

● bazel shutdown

— stop the persistent workers, useful to save resources

(also might be needed to drop cached credentials to remote cache)

Lab
Querying & profiling &
cache & configuration

Objectives

Query build targets and their
dependencies, check profiling, compile
and save build artifacts into a local disk
cache, configure shorthand for common
options

Schedule 1. Introduction to Bazel
2. Using Bazel
3. Building Java, Python, Protobufs
4. CLI and ToolingDay 1

✔

Schedule 5. Starlark, Genrules, Macros
6. Writing Rules
7. Platforms and Toolchains
8. Remote Features, Packaging,

DeploymentDay 2

