
Riot Bazel Training
Day 1, Lectures 1 & 2

In the next two days you will learn how to use
Bazel to its fullest.

● The first day will be focused on Using
Bazel — we’ll talk mostly about existing
rules, features and languages. There are
four lectures covering this track.

● During the second day we will talk about
extending Bazel, in lectures 5-8. This will
require a look under the hood, leading
inevitably to Starlark programming. Let us
know if you get stuck anywhere. We are
here to help.

Course Outline

Schedule 1. Introduction to Bazel
2. Using Bazel
3. Building Java, Python, Protobufs
4. CLI and ToolingDay 1

Schedule 5. Starlark, Genrules, Macros
6. Writing Rules
7. Platforms and Toolchains
8. Remote Features, Packaging,

DeploymentDay 2

Day 1
Getting to Know Bazel

1. Introduction to Bazel

What is Bazel?

Bazel is an open-source build and test tool similar
to Make, Maven, and Gradle. Bazel supports
projects in multiple languages and builds outputs
for multiple platforms. It can handle codebases
containing thousands of applications, used by
thousands of developers daily.

● While Bazel supports many
popular programming languages
out the box, it can also be
extended with Starlark — a
Python-subset scripting language
used in BUILD and WORKSPACE
files and the extension libraries, I.e
files ending with *.bzl

● Today we’ll learn how to use Bazel.

● Tomorrow we’ll focus on extending
Bazel.

Was Bazel the answer, what would be the
question?

The question would likely be: “How do I get my software to build in a
highly consistent, always correct, and extremely fast way? Oh, and I
should probably also mention that I have ten thousand developers
working on a Petabyte-sized mono repo and committing an average of
five commits per second.” Right. Glad we cleared that up.

Pause for a moment to appreciate this massive achievement of software
engineering. Because — and this is exactly what Bazel does — it is a bit like
magic.

Luckily, using Bazel is much much easier than writing Bazel,
and over the next two days we hope you will feel comfortable

with Bazel to the extent that you are not only able to
confidently use it within your projects, but it becomes your

preferred method of building software of any kind.

1.1 Bazel in a Nutshell

Bazel Quick Intro

Bazel works best when you are using a
single large repository of source code that
may contain several applications,
potentially written in different languages.

You tell Bazel where the root of your
workspace is by placing a text file with
the name WORKSPACE there.

The file can be empty, and only one
WORKSPACE file is allowed per
repository.

Inside application folders you may
or may not place a BUILD file – a
similar text file that defines rules
relative to the directory it’s in.

NOTE: A directory with a BUILD file
is called a Package in Bazel
terminology, just like the directory
with a WORKSPACE file is called a
Repository.

Packages & BUILD files
● To enable Bazil in any source code repository,

you must create one WORKSPACE file at the
root, and as many BUILD files in each source
folder/sub-folders as necessary.

● Inside the BUILD files you define build targets in
your repo by invoking various rules (which are
basically build functions).

● Build targets are the smallest unit you can
declare a dependency on from someplace else.

● There are rules that know how to build
executable binaries and libraries using Java, C++,
Go. Other rules know how to run tests, build
docker images, etc.

While defining your targets you must also declare all of the
dependencies the target needs.

A really important design constraint of Bazel is this:

● External dependencies (interpreters, SDKs, libraries, etc) i.e —
anything that’s not inside the source tree, can only be
declared and loaded via the WORKSPACE file

● WORKSPACE file may invoke Bazel functions that actually
perform the download of external resources.

● BUILD files can not declare or fetch any external resources.

Targets, and Target’s Targets

Bazel Quick Facts

Bazel is written in Java and requires a valid JDK installed.
● When you run Bazel commands in a workspace, Bazel will start a server on the

background, anchored to that specific workspace.
● If you have another workspace, and you run Bazel commands there, another

server will be booted, potentially with a completely different configuration as
defined by the other workspace.

● It’s important to understand that multiple background Bazel servers rarely
interact with one another, and that they are attached to the workspace they were
started in.

1.2 Core Concepts

REPOSITORIES &
WORKSPACES
Repository is any directory on your filesystem that contains
the source files for the software you want to build, as well
as symbolic links to directories that contain the build
outputs.

Bazel Workspace is a directory that has a text file named
WORKSPACE at its root, which may be empty

● Nested workspaces are discouraged, although may be
required sometimes. When Bazel, running in one workspace,
finds a subdirectory containing a WORKSPACE file, Bazel skips
that directory entirely.

Directories containing file WORKSPACE are considered the
root of a repository, and are referenced as “@”

REPOSITORIES &
WORKSPACES, ctd.

The code is organized in repositories. The directory
containing the WORKSPACE file is the root of the main
repository, also called “@”. Other, (external) repositories
can be referenced in the WORKSPACE file using special
syntax.

Workspaces and repositories are very similar, but
there is a slight difference: workspaces must have a
WORKSPACE file at its root, while repositories do not,
and may include multiple workspaces.

WORKSPACE file — External Dependencies

The workspace rules are responsible for downloading, installing, and using
any and all external dependencies your project might have.

NOTE: As external repositories are repositories themselves, they often contain a
WORKSPACE file as well. However, these additional WORKSPACE files are ignored by
Bazel. In particular, repositories dependent upon transitively are not added
automatically to the current repository hierarchy, but their components are made
available via the load statement in the BUILD files. It’s conceptually similar to
TypeScript import statement.

Workspace example

workspace(name = “donut_project”)

load("http.bzl", "http_archive")

http_archive(
 name = “flour”,
 urls = [“https://github.com/flour.tar.gz”],
 sha256 = “123456789”,
)

PACKAGES

The primary unit of code organization within a
repository is the package.

A package is a collection of related files and a
specification of the dependencies among
them.

Practically, a package is defined as a directory
containing a file named BUILD or BUILD.bazel,
residing beneath the top-level directory in the
workspace.

A package includes all files in its directory, plus
all subdirectories beneath it, except those
which themselves contain a BUILD file.

PACKAGE EXAMPLE

For example, in the following directory tree
(presumed to be nested inside a Workspace):

src
└── my
 └── app
 ├── BUILD
 ├── app.cc
 ├── data
 │ └── input.txt
 └── tests
 ├── BUILD
 └── test.cc

● There are two packages, my/app, and
the subpackage my/app/tests.

● Note that my/app/data is not a
package, but a directory belonging to
package my/app.

BUILD file Example

flavors/BUILD

java_binary(
 name = “chocolate”,
 srcs = [“Chocolate.java”],
 main_class = “flavors.Chocolate”,
)

Targets

● A BUILD file (and a corresponding package) consists of zero or more
targets.

● Each call to a build rule returns no value but has the side effect of
defining a new target; this is called instantiating the rule.

● There three kinds of targets:
○ Files
○ Rules
○ Package Groups

Targets — Files

● Source files are usually written by the efforts of people, and
checked in to the repository.

● Generated files, sometimes called derived files, are not
checked in, but are generated by the build tool from source
files according to specific rules.

Files are further divided into two kinds:

Target Visibility

An important property of all Rules is that the files generated by a rule always belong to
the same package as the rule itself.

In other words — it is not possible to generate files into another package.

It is not uncommon for a rule's inputs to come from another package, though.

Package groups are sets of packages whose purpose is to limit accessibility of certain
rules. Package groups are defined by the package_group function. They do not generate
or consume files.

They have two properties:

1. the list of packages they contain
2. and their name.

Labels — A Target’s Name

In Bazel labels refer to:

● They refer to a name of a target,
and a particular syntax used to
reference it.

● Label is also a proper Class in
Bazel and can be instantiated
and passed around as an
argument.

A good way to think of a label is that
of a postal address: Label provides a
public address for all targets.

Not all labels are accessible from
another package because of the
visibility constraints.

Labels uniquely identify each target within the
current package, current workspace, and even
across multiple repositories. Structurally, a
package contains zero or more targets.

Anatomy of a Label

@bowls//sizes/large/blue:ice_cream_bowl

Optional repository name

A root of a repository

The package

The target

Labels — Canonical Form of a Label

Target’s name is a label, and a typical label in
canonical form looks like this:

@myrepo//my/app/main:app_binary

In the typical case that a label refers to the
same repository it occurs in, the repository
name may be left out.

So, inside @myrepo this label is usually
written as

//my/app/main:app_binary

Each label has two parts, a package name
(my/app/main) and a target name
(app_binary).

Every label uniquely identifies a target.

Labels sometimes appear in other forms;
when the colon is omitted, the target
name is assumed to be the same as the
last component of the package name, so
these two labels are equivalent:

//my/app:app
//my/app
//:app

Labels ctd. —Labels within a BUILD file
Within a BUILD file, the package-name part of the label may be omitted, and optionally the colon too.
So within the BUILD file for package my/app (i.e. //my/app:BUILD), the following "relative" labels are all
equivalent:

//my/app:app
//my/app
:app
app

NOTE: It is a matter of convention that the colon is omitted for files, but retained for rules, but it is not
otherwise significant.

Similarly, within a BUILD file, files belonging to the package may be referenced by their unadorned name
relative to the package directory:

generate.cc
testdata/input.txt

Labels, ctd.— Main Repo & Querying

● Labels starting with @// are references to the main repository,
which will still work even from external repositories.

● Therefore @//a/b/c is different from //a/b/c when referenced
from an external repository.

● The former refers back to the main repository, while the latter
looks for //a/b/c in the external repository itself.

● This is especially relevant when writing rules in the main
repository that refer to targets in the main repository, and will
be used from external repositories.

With query command you can easily
introspect and successfully reason
about functionality of any part of a
mono repo, written in any language.

Since labels are language
independent, they offer a unique
interface into application
subsystems but from the build
perspective, documenting code
organization, instead of the code API.

Rules & Actions

● Bazel Rules are made up of many Actions.

● Actions take a set (which can be empty) of input files and generate a
(non-empty) set of output files. The set of input and output files must be
known during the analysis phase.

● The output of an action must only depend on the explicitly stated inputs.
All actions should be hermetic, isolated from all but explicit dependencies

● Rules are defined in starlark

Rules & Actions

Bazel Build Phases:
1. Loading Phase: Parse and instantiate all the rules, create the

Target Graph
2. Analysis Phase: Calculate the Action Graph, and compute

hashes of inputs to look up in the cache and see what needs to
be rebuilt.

3. Execution Phase: Run the minimum number of actions to
recompute the final result.

Build Phases

Configuration
(e.g. bazelrc)

Rule definition
(e.g. cc_binary)

BUILD file Target + deps

Configured
target + deps

Action + deps

In-memory graph maintained by Bazel

External state

//foo:bar
//foo:baz

cc -c bar.m -o bar.o
cc -o app *.o

Rules & Actions: pkg_tar
The action to create a tarball in pkg_tar looks like this:

ctx.actions.run(
 executable = ctx.executable.build_tar,
 inputs = file_inputs + ctx.files.deps + [arg_file],
 arguments = ["--flagfile", arg_file.path],
 outputs = [ctx.outputs.out],
)

● ctx is the context of the rule.
● ctx.actions is how you register an

action to a rule
● ctx.actions.run is an action that

calls a script

● executable is a reference to the build_tar script
to be run.

● inputs are all files needed to run this script.
● arguments are sent to the executable.
● outputs are all files this action generates.

Hermeticism

For something to be hermetic means “impervious to external
influence”.
It follows that for a build system to be hermetic, it should be “sealed
airtight”, i.e. unaffected by external (to the build) influences.

Rules & Actions: Hermeticism

Explicit inputs & outputs = speed & correctness. How?

1. Caching — local or remote, for each artifact and result of an action

2. Parallel Remote Execution — ability to spread the build actions across a build farm

3. Minimum work to rebuild — Bazel computes the list of nodes that must be rebuilt using
the declared inputs, and the directed action graph it compiles during the analysis phase

4. Deterministic builds — build steps produce the same result (with an identical SHA)
regardless of when they run, or which machine they run on

5. Conversely, build steps produce a new result every time their inputs change
6. Build steps that are hermetic can be cached and reused, with their content’s SHA acting

as a Cache Key

Rules & Actions: Sandboxing

Bazel uses Sandboxing to enforce hermeticity:

● Starlark is prohibited from arbitrary I/O

● Processes are run with sandbox-exec on macOS and limited privileges (no
network, etc)

● Tools are run in isolation to ensure they’re only operating on declared inputs,
and undeclared outputs don’t affect future actions

Directed Acyclic Graphs (DAGs) & Bazel

● During the loading phase, Bazel computes a target dependency graph which
is used in the analysis phase

● During analysis, Bazel computes the action graph
● A Merkle tree is created:

○ Files are the leaf nodes and are digested using their corresponding content;
○ Directories are the tree nodes and are digested using digests from their

subdirectories and children files
○ SHA256 hashing is often used but this can be customized
○ Merkle tree nodes are immutable. Any change in a node would alter its identifier

and thus affect all the ascendants in the DAG, essentially creating a different DAG

Caching

● All inputs and outputs are hashed and accessible by the digest of the
content itself.

● This is often referred to as CAS: Content Addressable Storage.
● Thanks to this mechanism, it’s possible to implement shared,

distributed build caches that greatly reduce build times for developers
and CI machines

● BMW saw 10x speed up in their unit test times and 12x speed up in build times with bazel remote cache and execution.
● Braintree: they’ve been suffering from slow and sluggish Gradle builds and they report various improvements after

switching to bazel: half test time, 10x clean builds, etc.
● Databricks reports increased build stability, 10x decrease in time. They also successfully use bazel for k8s deployments
● Dataform: 6x faster CI builds.
● Google/OSS:

○ Angular test times reduced from 1 hour to 15 minutes
○ Android Studio: better scalability allows them to run full tests at every commit
○ Tensorflow: average build times decreased by 80%; Dedicated CI hardware reduced by 80%;

● LinkedIn migrated 2 iOS applications and saw ~50% incremental build time decrease and 6x clean build time decrease. They
are only using caching, so when they turn on remote execution, they are likely to see even better results.

● Pinterest iOS build time dropped from 4 minutes to under a minute, sometimes as low as 30 seconds.
● Redfin saw 10x build speed up when they migrated from maven to bazel.
● Stripe is happy about build reproducibility, they have also seen 3x reduction in their build times.
● SpaceX: reproducibility of the build is what matters most for them.
● Wix: 90% reduction in build time.

You’re in good company!

First Lab - Repo Setup

● Download and extract labs repo
○ or clone with git clone https://github.com/flarebuild/training-labs-templates.git

● Run scripts/setup (if bazelisk isn’t installed and in your path)
● If you prefer to use VSCode —

○ download it, install,
○ and make sure you have the code shortcut configured/installed

■ Press ⇧⌘P (Command-Shift-P) to bring up the "Show All Commands" drop down, and search for
"code"

■ Select Shell Command: Install 'code' in your PATH and press ENTER.
○ Then run:

cd .vscode && make install

https://drive.google.com/file/d/1fZrydkYpg-UX6nP282-jiRFCYuBcpUbw/view?usp=sharing

2. Using Bazel

Invoking Bazel
Bazel is implemented as a client-server

application

● The Bazel system is implemented as a long-lived server
process.

○ This allows it to perform many optimizations
not possible with a batch-oriented
implementation, such as caching of BUILD files,
dependency graphs, and other metadata from
one build to the next.

○ It massively improves the speed of incremental
builds, and allows different commands, such as
build and query to share the same cache of
loaded packages, making queries very fast.

Bazel Client & Server

Client
● When you run bazel, you’re running the

client

● The client finds the server based on the
output base, which by default is
determined by the path of the base
workspace directory and your user id

● If the client cannot find a running server
instance, it starts a new one

Server
● If you build in multiple workspaces, you’ll

have multiple output bases and thus
multiple Bazel server processes

● Multiple users on the same workstation
can build concurrently in the same
workspace because their output bases
will differ (different users)

● The server process will stop after a period
of inactivity (3 hours, by default, which
can be modified using the startup option
--max_idle_secs).

Persistent Workers

● In addition to the long-running Bazel server, many compilers are also implemented using
Bazel’s persistent worker mechanism to ensure no time is wasted starting up
slow-booting compilers.

● This is important because in Bazel, every action is invoked in a separate process, meaning
thousands of calls to javac for a large application.

● Adding a persistent worker for javac increased build times for java applications by
approximately 4x.

● Controlling the spawn strategy of workers can be accomplished via the flag --strategy.

Rules In Depth

A refresher:

A rule specifies the relationship between inputs and outputs, and the steps
to build the outputs.
Rules can be of one of many different kinds or classes.
Rules typically produce compiled executables and libraries, test executables
and other supported outputs as described in the Build Encyclopedia.

Rules In Depth: Names

● Every rule has a name, specified by the name attribute, of type string.
● The name must be a syntactically valid target name.
● In some cases, the name is somewhat arbitrary, and more interesting are

the names of the files generated by the rule; this is true of genrules. In
other cases, the name is significant: for binary and test rules, for example,
the rule name determines the name of the executable produced by the
build.

Rules In Depth: Attributes

● Every rule has a set of attributes; the applicable attributes for a given rule,
and the significance and semantics of each attribute are a function of the
rule's class.

● Each attribute has a name and a type.
● Some of the common types an attribute can have are integer, label, list of

labels, string, list of strings, output label, list of output labels.
● Most rules define 3 types of dependencies: src, deps, and data, as well as

additional common attributes shared by all rules on top of the rule’s unique
attributes.

Rule Types

● Workspace Rules (also known as
Repository Rules)

● Rules used in BUILD files can be of the
following three broad types:

○ Build Rules
— rules that create build artifacts

○ Run Rules
— rules that execute binaries and
scripts

○ Test Rules
— rules that run tests

● Native rules are rules built
into Bazel itself, such as
cc_binary, or java_library
(but see a comment in the
following slides).

● Non-native rules are the ones
that require an external
download, and activation (via
the WORKSPACE file)

Workspace Rules

● Workspace rules are the only place in the Bazel workspace where
you can define, download, and install external dependencies.

● Using git pull of any commit or a branch, or via https, or even
ftp/sftp — it’s possible to fetch an external dependency and
verify its sha256sum.

Build Rules

Build rules are rules that are instantiated in BUILD files and describe targets corresponding to source files
in the workspace—typically compiler invocations, etc.

load("@rules_java//java:defs.bzl", "java_binary")

java_binary(
 main_class = "com.flarebuild.hello.Hello",
 name = "hello",
 srcs = ["Hello.java"],
)

This java_binary rule defines a target with a name “hello” which takes source code asan input and
produces a jar when invoked with bazel build. It’s also an executable rule which can be run with bazel run.

Native Rules

Native rules are shipped with the Bazel binary and are always available in
BUILD files without a load statement.

In the case of language-specific rules, some of which were previously
native, the current trend is to move them to individual packages as
can be seen with java and C++ rules which are now loaded from
packages.

Native Rule: Filegroup

Use filegroup to give a convenient name to a
collection of targets. These can then be
referenced from other rules.

Using filegroup is encouraged instead of
referencing directories directly. The latter is
unsound since the build system does not have
full knowledge of all files below the directory,
so it may not rebuild when these files change.

When combined with glob, filegroup can ensure
that all files are explicitly known to the build
system.

filegroup(
 name = "foo_bar",
 srcs = [
 "foo.txt",
 "bar.txt",
],
)

https://docs.bazel.build/versions/master/be/functions.html#glob

Native Rule: Alias

As the name suggests, you can use this rule to create a new name for an existing
rule. This can be a rule in the same package, or in another package.

alias(
 name = "foobar_alias",
 actual = ":foo_bar",
)

Native Rule: Genrule

A genrule rule generates one or more files using a user-defined Bash command.
General rules are typically generic build rules that you can use if there's no specific rule
for the task.

genrule(
 name = "create_baz",
 outs = ["baz.txt"],
 srcs = [],
 cmd_bash = "echo baz > $@"
)

This genrule invokes the bash command specified, creating the defined output. If the
bash command invoked didn’t create a file, this would fail to build. Note that Bazel
expands $@ into the single output (baz.txt, in the expected path). More on this later.

ConfigSetting & Select
Configurable attributes, commonly known as select(), are a Bazel feature that lets users toggle the
values of BUILD rule attributes at the command line.

config_setting(
 name = "bar_config",
 values = {
 "define": "word=bar",
 },
)

config_setting(
 name = "baz_config",
 values = {
 "define": "word=baz",
 },
)

filegroup(
 name = "foo_bar_or_baz",
 srcs = [
 "foo.txt",
] + select({
 ":bar_config": ["bar.txt"],
 ":baz_config": ["baz.txt"],
 "//conditions:default": ["bar.txt"],
 }),
)

$ bazel build //:foo_bar_or_baz --define word=bar

ConfigSetting & Select, ctd.
Configurable attributes, commonly known as select(), are a Bazel feature that lets users toggle the
values of BUILD rule attributes at the command line.

config_setting(
 name = "bar_config",
 values = {
 "define": "word=bar",
 },
)

config_setting(
 name = "baz_config",
 values = {
 "define": "word=baz",
 },
)

More examples:

● bazel build //:foo_bar_or_baz --define word=bar

○ bar.txt is included in srcs of the filegroup

● bazel build //:foo_bar_or_baz --define word=bar

○ baz.txt is included

● bazel build //:foo_bar_or_baz

○ bar.txt is included, as it’s the default of the select()

IDE
Integration:
VSCode

IDE
Integration:
IDEA

IDE Integration: IDEA

● The plugin offers Bazel support in the IDE, but in order to enable it, a project must
first be "imported" as a Bazel project; this creates a .bazelproject “project view”
file in .ijwb project folder. This is commonly in gitignore, and a shared project view
file is typically committed in project/.bazelproject.

● If you’re starting with a shared .bazelproject, you’ll want to be sure to import
this file; the contents will then be cloned to your local .bazelproject copy.

● There’s a wide range of things that can be done in this .bazelproject file to
enhance the experience of using Bazel in the IDE outside of what is possible with
Bazel configuration and tags themselves, and there are additional IDEA-only tags
that can be applied to targets to change plugin behavior per target using Bazel’s
built in tag mechanism.

Installing Bazel IntelliJ IDEA Plugin

The simplest way to install the plugin is to find it in
the Plugin Marketplace, and install from there.

However, sometimes the plugin is behind the most
recent version of the IntelliJ IDE, and in these cases
you have two choices:

● Rollback IDE to a previous version

● Or, build the plugin from sources
https://bit.ly/bazel-idea-build

https://kig.re/2020/03/21/building-intellij-bazel-plugin.html
https://bit.ly/bazel-idea-build

IDEA Plugin Features
The plugin allows you to:

● Compile your project and get navigable compile errors in the IDE.

● Run lint from within the IDE with navigable issues.

● Support for IDEA run configurations for any executable Bazel rule.

● Run tests from within the IDE by right-clicking on methods/classes, with deep JUnit integration

● BUILD file and .bzl (starlark) language support.

● CTRL/CMD click to navigate to targets

● Live templates & autocompletion/intellisense in BUILD & bzl files for all rules, custom or native

● Synchronization of source with Bazel, allowing proper imports, autocompletion, and syntax
highlighting in 8+ supported languages

Lab: labs/lab2.md

Lab 2.1 - Bazel Hello World
1. Create a BUILD file for hello world java application
2. Create a BUILD file for hello world python application

Lab 2.2 - PySpark
● Create BUILD and bzl files for PySPark/dataproc

Riot Bazel Training
Day 1, Lectures 3 & 4

Schedule 1. Introduction to Bazel
2. Using Bazel
3. Building Java, Python, Protobufs
4. CLI and ToolingDay 1

4. Building Java, Python, Protobufs
with Bazel

3.1
rules_jvm_external

Motivation

Rules jvm external make it easy to use any maven dependency, In this example we
will. This is the only good way to get 3rd party dependencies from “maven central”
or jcenter or other maven artifact repositories; in this case when they say maven
they mean “java modules”.

By using rules_jvm_external, bazel downloads 3rd party JARs and lets you depend
on them as deps in your libraries and correctly links them up in the classpath at
compile time (and even lets you navigate to code in idea).

Any and all real-world JVM projects should use rules_jvm_external to get any 3rd
party dep they use

Setting up WORKSPACE

RULES_JVM_EXTERNAL_TAG = "3.3"
RULES_JVM_EXTERNAL_SHA = "d85951a92c0908c80bd8551002d66cb23c3434409c814179c0ff026b53544dab"

http_archive(
 name = "rules_jvm_external",
 sha256 = RULES_JVM_EXTERNAL_SHA,
 strip_prefix = "rules_jvm_external-%s" % RULES_JVM_EXTERNAL_TAG,
 url =
 "https://github.com/bazelbuild/rules_jvm_external/archive/%s.zip" %
 RULES_JVM_EXTERNAL_TAG,
)

Import maven_install()
Note the location of maven_install.json

load("@rules_jvm_external//:defs.bzl", "maven_install")
load("@rules_jvm_external//:specs.bzl", "maven")

maven_install(
 name = "maven",
 artifacts = [], # maven dependencies come here
 maven_install_json = "//:maven_install.json",
 repositories = [
 "https://jcenter.bintray.com/",
 "https://maven.google.com",
 "https://repo1.maven.org/maven2",
],
)

● Private repositories are supported through HTTP Basic auth
Eg: "http://username:password@localhost:8081/artifactory/my-repository",

Use pinned_maven_install()

Use pinned_maven_install to “pin” your downloaded and transitive
dependencies versions

load("@maven//:defs.bzl", "pinned_maven_install")

pinned_maven_install()

Defining Dependencies —
pom.xml to maven_install()

<dependency>
<groupId>com.github.scopt</groupId>
<artifactId>scopt_2.11</artifactId>
<version>4.0.0-RC2</version>

</dependency>

Should be defined as following in artifacts[] of maven_install():
 artifacts = [
 "com.github.scopt:scopt_2.11:4.0.0-RC2",
],

Defining Dependencies:
pom.xml to maven_install()

<dependency>
<groupId>com.github.scopt</groupId>
<artifactId>scopt_2.11</artifactId>
<version>4.0.0-RC2</version>

</dependency>

Alternatively, can be defined as maven.artifact, so we can gain more control over artifacts:
 artifacts = [
 maven.artifact(
 "com.github.scopt",
 "scopt_2.11",
 "4.0.0-RC2",
 testonly = True,
),
],

Generate maven_install.json

Change dependencies:

$ bazel run @unpinned_maven//:pin

Commands to work with maven dependencies:

Pin dependencies:

$ bazel run @maven//:pin

Using Dependencies:
pom.xml to BUILD.bazel

<dependency>
<groupId>com.github.scopt</groupId>
<artifactId>scopt_2.11</artifactId>
<version>4.0.0-RC2</version>

</dependency>

Should be defined as following in target’s deps in BUILD.bazel:
"@maven//:com_github_scopt_scopt_2_11",

Lab
rules_jvm_external

Objective:

Build a java library, which will depend on
org.apache.commons.math3.complex.Complex

Additionally, build and run tests for the
library.

Functionally:

It takes 2 real numbers as input and
returns a pretty printed complex number.

3.2
rules_python_external

Motivation

rules_python_external should be used as a drop in replacement for the python rules in all
instances of use. It has the same API, but addresses most of packaging issues and a number
of other things which currently broken in the official rules bazelbuild/rules_python

They solve
● Transitive dependency resolution
● Minimal runtime dependencies
● Support for spreading purelibs
● Support for namespace packages
● Fetches pip packages only for building Python targets
● Reproducible builds

https://github.com/dillon-giacoppo/rules_python_external
https://github.com/bazelbuild/rules_python
https://www.python.org/dev/peps/pep-0491/#installing-a-wheel-distribution-1-0-py32-none-any-whl
https://packaging.python.org/guides/packaging-namespace-packages/

Setting up WORKSPACE
rules_python_external_version = "0.1.5"

http_archive(
 name = "rules_python_external",
 sha256 = "", # Fill in with correct sha256 of your COMMIT_SHA version
 strip_prefix = "rules_python_external-{version}".format(
 version = rules_python_external_version
),
 url = "https://github.com/dillon-giacoppo/rules_python_external/archive/v{version}.zip".format(
 version = rules_python_external_version
),
)

Install the rule dependencies
load("@rules_python_external//:repositories.bzl", "rules_python_external_dependencies")
rules_python_external_dependencies()

https://github.com/dillon-giacoppo/rules_python_external/archive/v%7Bversion%7D.zip%22.format

Import pip_install()

load("@rules_python_external//:defs.bzl", "pip_install")

pip_install(
 name = "pip",
 requirements = "//:requirements.txt",
)

Python Dependencies — Importing
Adding the “pip install”:

load("@rules_python_external//:defs.bzl", "pip_install")
pip_install(
 name = "pip",
 requirements = "//:requirements.txt",
)

Create requirements.txt file and define dependencies:
numpy==1.19.1
pandas==1.1.0
tensorflow==2.3.0
matplotlib==3.1.2
Pillow==7.2.0

Python Dependencies — Referencing

In order to reference and use the dependencies:

load("@pip//:requirements.bzl", "requirement")

py_binary(
 deps = [
 requirement("tensorflow"),
],
)

Lab
rules_python_external

Objective:

Build a python application, which depends
on tensorflow, numpy and other data
science libraries. Additionally, build and
run test for the application.

Functionally:

Using a pre-trained keras model,
application takes as an input the image
from test set and outputs prediction and
expected tag for the image.

3.3. Using Protobuf for Java and Python
with Bazel

Motivation

Protocol buffers are Google's language-neutral, platform-neutral, extensible
mechanism for serializing structured data.

Once declared in *.proto files, they can be compiled to specific languages. Set of
rules supporting protobufs in bazel is called rules_proto.

However, as we will see further, rules_proto don’t support all languages, so we
will also look at rules_proto_grpc as an example of external rules we will use to
support proto in python.

https://github.com/bazelbuild/rules_proto

Setting up WORKSPACE

http_archive(
 name = "rules_proto",
 sha256 = "602e7161d9195e50246177e7c55b2f39950a9cf7366f74ed5f22fd45750cd208",
 strip_prefix = "rules_proto-97d8af4dc474595af3900dd85cb3a29ad28cc313",
 urls = [

"https://mirror.bazel.build/github.com/bazelbuild/rules_proto/archive/97d8af4dc474595af3900dd85cb3a29ad28c
c313.tar.gz",

"https://github.com/bazelbuild/rules_proto/archive/97d8af4dc474595af3900dd85cb3a29ad28cc313.tar.gz",
],
)

load("@rules_proto//proto:repositories.bzl", "rules_proto_dependencies", "rules_proto_toolchains")

rules_proto_dependencies()

rules_proto_toolchains()

Using rules_proto rules

load("@rules_proto//proto:defs.bzl", "proto_library")

proto_library(
 name = "sample_proto",
 srcs = [":sample.proto"],
)

● proto_library outputs compiled protobuf *.bin, which is used in
language-specific proto libraries

● You may notice that it takes a while to build it for the first time, this is
because bazel had to pull a protobuf compiler itself.

Using Generated Code

load("@rules_java//java:defs.bzl", "java_proto_library")

java_proto_library(
 name = "sample_proto_java",
 deps = [":sample_proto"],
)

Once protobuf file if compiled, we can proceed and define it as
dependency to java_proto_library target “sample_proto_java”. This
code needs to reside in proto repository, since it can be reused by
multiple java repositories.

Using Generated Code, ctd.

java_binary(
 name = "sample",
 srcs = ["sample.java"],
 deps = [
 "//src/main/proto:sample_proto_java",
],
)

Now sample_proto_java can be used in java_binary to provide
access to generated proto code.

Complications with Python Proto

java_proto_library is a part of rules_java, but Bazel doesn’t support
python proto by default. As a result python rules for working with
compiled proto should be pulled from external source.

To learn which proto rules are included in Bazel by default:
see Build Encyclopedia.

https://docs.bazel.build/versions/master/be/overview.html

Setting up WORKSPACE — Python

http_archive(
 name = "rules_proto_grpc",
 sha256 = "5f0f2fc0199810c65a2de148a52ba0aff14d631d4e8202f41aff6a9d590a471b",
 strip_prefix = "rules_proto_grpc-1.0.2",
 urls = ["https://github.com/rules-proto-grpc/rules_proto_grpc/archive/1.0.2.tar.gz"],
)

load("@rules_proto_grpc//:repositories.bzl", "rules_proto_grpc_repos", "rules_proto_grpc_toolchains")

rules_proto_grpc_toolchains()

rules_proto_grpc_repos()

Using Generated Code

load("@rules_proto_grpc//python:defs.bzl", "python_proto_library")

python_proto_library(
 name = "sample_proto_python",
 deps = [":sample_proto"],
)

Similar to java, now we need to use python_proto_library to make
compiled proto available.

Using Generated Code, ctd.

py_binary(
 name = "sample",
 srcs = ["sample.py"],
 deps = [
 "//src/main/proto:sample_proto_python",
],
)

Now sample_proto_python can be used in py_binary target to provide
access to generated proto code.

Package & Target Visibility
By default, targets can depend only to targets in the same package, since proto is typically a separate
repo, it’s important to reiterate on the concept of visibility. Visibility can be defined on package or target
level:

package(default_visibility = ["//visibility:private"])
load("@build_bazel_rules_typescript//:defs.bzl", "ts_library")

ts_library(
//omitted

)

python_proto_library(
 name = "sample_proto_python",
 visibility = ["//src/main/python/sample:__pkg__"],
 deps = [":sample_proto"],
)

Package & Target Visibility

["//visibility:public"]
Anyone can use this. This visibility should be
considered to be a public API and should not be used
unless we do intend to expose a public API from
workspace/repo.

["//visibility:private"] Only targets in this package can use this

["//some/demo_package:__pkg__", "//other/package:__pkg__"] Only targets in some/package and other/package
have access to this

["//my_project:__subpackages__", "//other:__subpackages__"] Only targets in packages project or other or in one of
their sub-packages have access to this

["//some/demo_package:my_package_group"] A package group is a named set of package names

Lab
Using Protobuf for Java

and Python
with Bazel

Objective:

Compile protobuf.proto definition and
use it in java and python code

4. CLI & Tooling

4.1. Build Querying

Asking Bazel Questions — Query Types

query queries target graph, the output of loading phase

sky query an alternative implementation of query

cquery queries configured target graph (correctly handles select())

aquery queries action graph

genquery general bazel rule to run queries and save result to a file

Useful Queries
● List all packages in a workspace

bazel query '//...' --output package
● List all rules in a workspace

bazel query 'kind(rule, //...)' --output label_kind
● Find all dependencies of //packages/core

bazel query "deps(//packages/core)"
● More queries in labs...

Java Proto Example Dependencies

$ bazel query 'deps(//src/main/java/com/flarebuild/message:main)' --notool_deps
--noimplicit_deps --output graph | dot -Tpng > /tmp/test.png

4. 2 Execution Log & Profiling

Execution Log

The execution log can be used to list all Bazel’s executed actions, along with all inputs and outputs.
Useful to collect analytics or, for example, it may be helpful to troubleshoot remote cache hits (see
Chapter 8).

Currently, Bazel supports 3 types of flags to produce log files:

bazel build //your:target --execution_log_json_file=/tmp/log.json

bazel build //your:target --execution_log_binary_file=/tmp/log.bin

bazel build //your:target --experimental_execution_log_file=/tmp/log.txt

https://docs.bazel.build/versions/master/remote-execution-caching-debug.html

Execution Log
command_args: "bazel-out/darwin-opt/bin/external/libjpeg_turbo/_objs/jpeg/jcmaster.o"
environment_variables {
 name: "APPLE_SDK_PLATFORM"
 value: "MacOSX"
}//omitted
inputs {
 path: "bazel-out/darwin-opt/bin/external/libjpeg_turbo/jconfig.h"
 digest {
 hash: "317659a520922996ac746b3c589c441148eccfacdf58e66bc1100593b65ec3c5"
 size_bytes: 1985
 hash_function_name: "SHA-256"
 }
}//omitted
listed_outputs:
"bazel-out/darwin-opt/bin/external/libjpeg_turbo/_objs/jpeg/jcmaster.o"
remotable: true
cacheable: true
progress_message: "Compiling external/libjpeg_turbo/jcmaster.c"
mnemonic: "CppCompile"
actual_outputs {
 path: "bazel-out/darwin-opt/bin/external/libjpeg_turbo/_objs/jpeg/jcmaster.o"
 digest {
 hash: "7ba7e5fc36d77d7f8a17fd1285db462a69c054482998625461fcef5f055752cb"
 size_bytes: 8572
 hash_function_name: "SHA-256"
 }
}
runner: "remote cache hit"
remote_cache_hit: true

● This is an example of information
available in execution log. It contains
extensive info about executed actions:
○ Inputs, outputs, whether action

result was cached and much more
○ Full log format is described in the

protobuf scheme called
'spawn.proto'

https://github.com/bazelbuild/bazel/blob/master/src/main/protobuf/spawn.proto

Profiling
Profiling is useful for finding build and test bottlenecks

Bazel writes a JSON profile which can be later opened with Chrome
$ bazel build //.... --profile=/tmp/profile.gz

4. 3 Command-line Flags (options)

Command-line Flags — Introduction

bazel [build|run|test|query] [flags] -- [target patterns]

● Reference Documentation:
https://bit.ly/bazel-cli-ref

https://bit.ly/bazel-cli-ref

Useful Flags

Sometimes it is useful to try to build as much as possible even in the face of
errors. This option enables that behavior, and when it is specified, the build
will attempt to build every target whose prerequisites were successfully
built, but will ignore errors.

This option causes Bazel's execution phase to print the full command line for
commands that failed. This can be invaluable for debugging a failing build.

Useful for debug sandboxed build invocation, sandbox state will not be
erased after call

On clean ci build, better set to false, it can save memory & disk space

--keep_going

--verbose_failures

--sandbox_debug

--[no]use_action_cache

Useful Flags, Ctd.

--[no]remote_upload_local_results

--remote_download_minimal

--output_base=dir

--[no]build

Better set to false, it will not upload possibly huge local files (like java
platform classpath jars) to remote cache.

Do not download intermediate results from remote cache

Override the default output directory (which will be placed into /var/tmp).
Useful to debug output artefacts produced by the build.

Causes the build to stop before executing the build actions, returning zero
iff the package loading and analysis phases completed successfully; this
mode is useful for testing those phases.

4. 4 Tooling

.bazelrc
For project-specific options, use the configuration file your
<workspace>/.bazelrc (see bazelrc format).
Bazel looks for optional configuration files in the following locations, in the order
shown below:

● /etc/bazel.bazelrc
● %workspace%/.bazelrc - in workspace root
● $HOME/.bazelrc
● --bazelrc=file cmd line flag

https://docs.bazel.build/versions/master/guide.html#bazelrc

.bazelrc, ctd.
● You can load another RC file with import and try-import

try-import %workspace%/user.bazelrc

● You can add default options for commands with
build --default_option1
build --default_option2
...

● You can add option groups which are enabled by a shorthand switch
--config=group_name

build:group_name --default_option3
build:group_name --default_option4
...

Useful Tools
● Bazelisk

○ Bazel Launcher, provides a way to use specific Bazel
version (with .bazelversion file in a workspace)

● Buildifier
○ A formatting tool for bazel BUILD and .bzl files, can be

executed as a run rule

Buildifier
Buildifier applies standard formatting to the named Starlark files.
● Can run directly on a command line or as a Bazel Target
● Can warn about any inconsistencies, or auto-fix some of them

Example:
$ find . -name 'BUILD*' -exec buildifier {} \;

CLI Usage:
buildifier [-d] [-v] [-r] [-diff_command=command] [-help]
 [-multi_diff] [-mode=mode] [-lint=lint_mode] [-path=path] [files...]

Buildifier
Buildifier also has a corresponding Bazel rule you can invoke:

Bazel BUILD file usage:
load(

"@com_github_bazelbuild_buildtools//buildifier:def.bzl",
"Buildifier"

)

buildifier(name = "buildifier-lint-fix", lint_mode = "fix")

buildifier(name = "buildifier-lint-warn", lint_mode = "warn")

Example:
$ bazel run :buildifier-lint-fix

4. 5 Nuking

Useful Nuking Commands
● bazel clean

— delete all outputs in dist/bin

● bazel clean --expunge
— same as above plus deleting external repos

● bazel shutdown
— stop the persistent workers, useful to save resources
(also might be needed to drop cached credentials to remote cache)

Lab
Querying & profiling &
cache & configuration

Objectives

Query build targets and their
dependencies, check profiling, compile
and save build artifacts into a local disk
cache, configure shorthand for common
options

Schedule 1. Introduction to Bazel
2. Using Bazel
3. Building Java, Python, Protobufs
4. CLI and ToolingDay 1

✔

Schedule 5. Starlark, Genrules, Macros
6. Writing Rules
7. Platforms and Toolchains
8. Remote Features, Packaging,

DeploymentDay 2

Riot Bazel Training
Day 2, Lectures 5 & 6

Day 2
Extending Bazel

Schedule 1. Introduction to Bazel
2. Using Bazel
3. Building Java, Python, Protobufs
4. CLI and ToolingDay 1

Schedule 5. Starlark, Genrules, Macros
6. Writing Rules
7. Platforms and Toolchains
8. Remote Features, Packaging,

DeploymentDay 2

5. Genrules, Starlark, Macros

Bazel’s Power Lies in Extensibility

Does Bazel support my favorite programming language ____?

● If the answer is “yes”, — great!
● If the answer is “no”? Should we give up and go back to the

dreaded Makefile? CMakeFile.txt? build.xml?
● Anyway, what does it take to support a new language in

Bazel? What about a compiled language? What about a
new interpreted language?

_

5.1 General Rules — genrules

Genrules — Introduction
Genrules are generic build rules that you can use if
there's no specific rule for the task.

Genrules are suitable if you need to use bash scripts or
one-liners to produce some output from your inputs or
sources.

Below genrule creates an output file, but has no inputs.

genrule(
 name = "make_data",
 outs = ["data.txt"],
 cmd = "echo foo bar baz > $@",
)

Inputs/outputs Make Variables

● Note how CMD attribute uses make variables substitutions with $@
● $@ is an alias for single-file output, instead of $(OUTS)

$< is an alias for single-file input, instead of $(SRCS)
● There are others available: $(@D), $(RULEDIR), $(location),

$(output_name), $(execpath), etc.
● For CMD attribute you can use a shell one-liner, or provide a bash

script, or any any other binary target.

Example with a py_binary Target:

py_binary(
 name = "unfiltered_data",
 srcs = ["main.py"],
 main = "main.py",
)

genrule(
 name = "filtered_data",
 srcs = [":input"],
 outs = ["output.txt"],
 cmd = "$(location :unfiltered_data) $< > $@",
 tools = [":unfiltered_data"],
)

Note the $location helper – it will substitute path for the actual executable at runtime.

Escape Characters

Note that $ characters need to be escaped with $$ in CMD.
So, in order to invoke a shell command containing dollar-signs such as:

ls $(dirname $x)
awk '!a[$0]++'

You must escape it like this in Starlark:

ls $$(dirname $$x)
awk '!a[$$0]++’

Hermeticity Considerations

● Avoid non-hermetic rules or functions that do “improper” things
like downloads external files, put timestamps in the outputs,
generate random data, and so on.

● As a rule of thumb, a genrule should never access the network.
● If, for some reason, non-hermetic usage is unavoidable (for

instance, versioning the release before publishing a package, or
time-stamping the production deployment), at the very least
please make sure you don’t have any downstream dependent
targets (in other words, this target is the final step in the build).

Other Considerations

● Do not use absolute paths in scripts.
● Do not write to STDOUT (echo something), except for debugging

purposes.
● Do not create symlinks and directories, Bazel will not preserve

them. Exception: /tmp writes for intermediate data.
● Do not write to srcs! This is a bad idea in general, and usually it is

best to treat srcs as read-only (which they will be in a sandboxed
environment, for example).

Footgun
genrule(
 name = "do_not_do_this",
 srcs = ["src.txt"],
 outs = ["out.txt"],
 cmd = "echo 'garbage' > $<",
)

What’s happening here?
● Reminder: $< is a make variable replacement for SRCS, if it is a

single file (otherwise Bazel throws an error)
● So the command “echo … > $<” is attempting to write to a source

file!

Genrule Limitations

● Windows concerns — https://docs.bazel.build/versions/master/windows.html

● Genrule executes bash commands, so it is not cross-platform. In case your
Workspace will be used on Windows without MSYS2, genrules will not work (same
is applicable for sh_binary or sh_test rules).

● If you need to support Windows, there are several options:

○ First, you can provide several scripts for different platforms:
cmd_bash + cmd_bat / cmd_ps.

■ Invocation priority: cmd_ps → cmd_bat → cmd_bash → cmd.

○ Second, you can rewrite genrules using native_binary() from bazel-skylib,
wrapped in macros.

https://docs.bazel.build/versions/master/windows.html

5.2 Starlark — Pythonesque Elucidation

Decades Ago: A Kilobyte of History

Many years ago, code at Google was
built using Makefiles.
As other people noticed, Makefiles
don't scale well with a large code
base.
A temporary solution was to generate
Makefiles using Python scripts, where
the description of the build was stored
in BUILD files containing calls to the
Python functions.
But this solution was way too slow,
and the bottleneck was Make.

The project Blaze (later open-sourced
as Bazel) was started in 2006.
It used a simple parser to read the
BUILD files (supporting only function
calls, list comprehensions and variable
assignments).
When Blaze could not directly parse a
BUILD file, it used a preprocessing
step that ran the Python interpreter
on the user BUILD file to generate a
simplified BUILD file.
The output was used by Blaze.

“Blaze Fortnite”

Eventually, slow Make and Python scripts, as well as
“just too much mutual baggage” of both platforms,
prompted a development of new backwards-compatible
language, custom-fitted as a build configuration
language.

Decades Ago: A Megabyte of History, ctd.

● And just like that, Starlark was born.
● As a strict subset of Python, it is a dynamically typed

language with high-level data types, first-class functions
with lexical scope, and garbage collection.

● Independent Starlark threads execute in parallel, so
Starlark workloads scale well on parallel machines.

● Starlark is a small and simple language with a familiar and
highly readable syntax (unless you are a Rubyist, with a
special affinity for Betamax).

Starlark Was Born — Python3, CrippledImproved

“Starlord”, an inventor of “Starlark” and
all around super awesome dude

Years Ago: Two Bits of History, ctd.

● In the current iteration of Bazel, the Python preprocessing step
has been removed.

● But the Python syntax stuck around, and Stalark became the only
extension language of Bazel.

● Towards the end of 2010s, thanks in part to its success in the
academia, Python became the most popular interpreted
language ever. This development sealed the choice of Starlark as
the configuration language for the builds.

● Several other build tools (e.g. Buck, Pants, and Please) have all
adopted Starlark as the build configuration language.

● A Starlark interpreter is embedded within Bazel. Starlark
was designed from the ground up to be embeddable within
larger applications.

● Bazel uses Starlark both for its BUILD and WORKSPACE
files, and for its macro language, through which Bazel is
extended with custom logic to support new languages
and compilers.

● NOTE: There are multiple implementations of Starlark.

Starlark, ctd.

Star-who?

def fizz_buzz(n):
 """
 Print Fizz Buzz numbers
 from 1 to n.
 """
 for i in range(1, n + 1):
 s = ""
 if i % 3 == 0:
 s += "Fizz"
 if i % 5 == 0:
 s += "Buzz"
 print(s if s else i)

fizz_buzz(20)

Starlark’s syntax is inspired by Python3.

During the loading phase, Bazel first
evaluates the leaves of the
dependency graph (i.e. the files that
have no dependencies) in parallel.
It will load the other files as soon as
their dependencies have been loaded,
which means the evaluation of BUILD
and .bzl files is interleaved.
This also means that the order of the
load statements doesn't matter at all.

Starlark & Parallelism

Each file is loaded at most once. Once
it has been evaluated, its definitions
(the global variables and functions)
are cached. Any other file can access
the symbols through the cache.
Once the definitions of a file are
cached, they are made read-only, i.e.
you can iterate on an array, but not
modify its elements. You may create a
copy and modify that, though.

● Global variables are immutable.
● for statements are not allowed at the

top-level. Use them within functions
instead. In BUILD files, you may use list
comprehensions.

● if statements are not allowed at the
top-level. However, if expressions can be
used: first = data[0] if
len(data) > 0 else None.

● Deterministic order for iterating through
Dictionaries.

● Recursion is not allowed.
● Int type is limited to 32-bit signed

integers. Overflows will throw an error.

Starlark, Not Python

● Modifying a collection during iteration is
an error.

● Except for equality tests, comparison
operators <, <=, >=, >, etc. are not defined
across value types. In short: 5 < 'foo' will
throw an error and 5 == "5" will return
false.

● In tuples, a trailing comma is valid only
when the tuple is between parentheses,
e.g. write (1,) instead of 1,.

● Dictionary literals cannot have duplicate
keys. For example, this is an error:
 {"a": 4, "b": 7, "a": 1}.

● Strings are represented with
double-quotes (e.g. when you call repr).

● Strings aren’t iterable.

https://docs.bazel.build/versions/master/skylark/lib/globals.html#repr

Unsupported Python Features

● Implicit string concatenation (use explicit + operator)
● Chained comparisons (e.g. 1 < x < 5)
● class (see struct function)
● import (see load statement)
● while, yield
● float and set types
● generators and generator expressions
● lambda and nested functions
● is (use == instead)
● try, raise, except, finally (see fail for fatal errors)

● BUILD files register targets via making calls to rules.
● *.bzl files provide definitions for constants, rules, macros, and functions
● Native functions and native rules are

○ global symbols in BUILD files
○ While *.bzl files need to load them using the native module

● There are two syntactic restrictions in BUILD files:
○ declaring functions is illegal, and
○ *args and **kwargs arguments are not allowed.

Where Does Starlark Code Go?

5.3 Macros

Macros

● Macros are best suitable for reducing repetitive code
● Macros in a nutshell is just a Starllark function which could call

rules (and other macros) with desired arguments
● It could also be used to combine several rules invocations within

one logical block
● Macro contents will be parsed during the loading phase and

replaced with rules defined in it, so execution phase will only see
rules and arguments

Macro Example

Simple example for macro that does nothing except copying input to the output
using genrule invocation

def copy_data(name, src, out = "", **kwargs):
 native.genrule(
 name = name,
 srcs = [src],
 outs = [name + ".txt"],
 cmd = "cat $< > $@",
 **kwargs
)

Macro Example
● Note genrule is invoked as native.genrule in macro. Same will work for all native

rules (i.e. rules that don’t need to be loaded with load(...) statement).

● All macros must have a name argument.

● Macro could be reused across Workspace with different arguments.

● Macros could have an optional visibility argument.

● Create macros in .bzl files and use them in your BUILD files.

load(":defs.bzl", "my_macro")

my_macro(
 arg1 = "one",
 arg2 = "two"
)

Macro Example

To check how macro will work after evaluation, use query with --output=build on the
target using this macro:
bazel query --output=build //src/package:target_using_macro

If you want to throw an error within macro, use fail() statement:
def my_macro(name):
 fail("Don't call me maybe")

Lab 5
Genrules & Macros

Objectives:
● Create genrules to transform CSV files

and write macros to ease the process.
● Add tests to verify data transformed as

expected.

6. Writing Rules

Rules

Workspace Rules modify the workspace and as such are instantiated in the WORKSPACE.
A commonly encountered version of a workspace rule is a “repository rule” which makes
repositories available to the BUILD files within the primary workspace.
Examples workspace rules: http_archive, bind, local_repository.
In a lab after this lecture we will write our own custom workspace rule.

Build Rules are instantiated in BUILD files, and fit the description of a rule above; given inputs,
they run some actions and create outputs. Java_library, python_binary, pkg_zip, etc are
examples of Build Rules.

6.1. Workspace Rules

Hello world repository rule
def _hello_repo_impl(ctx):
 ctx.file("hello.txt", ctx.attr.message)
 ctx.file("BUILD.bazel", 'exports_files(["hello.txt"])')

hello_repo = repository_rule(
 implementation = _hello_repo_impl,
 attrs = {
 "message": attr.string(
 mandatory = True,
),
 },
)

1. Call a global function
repository_rule()

2. Each repository rule must have
implementation function

3. Implementation function gets ctx
parameter, which is a repository_ctx
object.

4. Repository_ctx has specific API lets
you download files, execute
commands, and access the file
system. file() generates a file in
the repository directory with the
provided content.

https://docs.bazel.build/versions/master/skylark/lib/repository_ctx.html

Registering repository rule
WORKSPACE

load("//:deps.bzl", "hello_repo")

hello_repo(
 name = "hello",
 message = "Hello, world!",
)

Since it’s a repository rule, it is instantiated
from WORKSPACE.

Important things to remember

● Repository rules are evaluated during the loading phase, rather than the analysis
phase. This means repository rules cannot create actions or depend on files created by
actions.

● The repository_ctx API provides rules with direct access to the host system. Take extra
care to stay hermetic: do not to let information from the host system slip into the build
(watch out for directory names, environment variables, or timestamps)

6.2. Build rules

Hello world Build Rule
def _hello_world_impl(ctx):
 out = ctx.actions.declare_file(ctx.label.name + ".cc")
 ctx.actions.expand_template(
 output = out,
 template = ctx.file.template,
 substitutions = {"{NAME}": ctx.attr.username},
)
 return [DefaultInfo(files = depset([out]))]

hello_world = rule(
 implementation = _hello_world_impl,
 attrs = {
 "username": attr.string(default = "unknown person"),
 "template": attr.label(
 allow_single_file = [".cc.tpl"],
 mandatory = True,
),
 },
)

1. Call a global function rule()
2. Each rule must provide an implementation

function
3. Implementation function gets ctx parameter,

which is a rule ctx object.
4. Rules context can be used to:

● access attribute values and obtain
handles on declared input and output
files;

● call actions
● pass information to other targets that

depend on this one, via providers.

https://docs.bazel.build/versions/master/skylark/lib/ctx.html
https://docs.bazel.build/versions/master/skylark/rules.html#providers

Actions
In our example, hello_world rule defines declare_file() and
expand_template() actions. Some other important actions from
ctx.actions API:

● ctx.actions.run, to run an executable.
● ctx.actions.run_shell, to run a shell command.
● ctx.actions.write, to write a string to a file.

def _hello_world_impl(ctx):
 out = ctx.actions.declare_file(ctx.label.name + ".cc")
 ctx.actions.expand_template(
 output = out,
 template = ctx.file.template,
 substitutions = {"{NAME}": ctx.attr.username},
)
 return [DefaultInfo(files = depset([out]))]

An action describes how to generate a set of outputs from a set of inputs, for example “run gcc on hello.c and get
hello.o”. When an action is created, Bazel doesn’t run the command immediately. It registers it in a graph of
dependencies, because an action can depend on the output of another action (e.g. in C, the linker must be called
after compilation).

In the execution phase, Bazel decides which actions must be run and in which order.

https://docs.bazel.build/versions/master/skylark/lib/actions.html#run
https://docs.bazel.build/versions/master/skylark/lib/actions.html#run_shell
https://docs.bazel.build/versions/master/skylark/lib/actions.html#write

Attributes
Rule context provides an API used to access
rule attributes.

def _hello_world_impl(ctx):
 out = ctx.actions.declare_file(ctx.label.name +
".cc")
 ctx.actions.expand_template(
 output = out,
 template = ctx.file.template,
 substitutions = {"{NAME}": ctx.attr.username},
)
 return [DefaultInfo(files = depset([out]))]

hello_world = rule(
 implementation = _hello_world_impl,
 attrs = {
 "username": attr.string(default = "unknown
person"),
 "template": attr.label(
 allow_single_file = [".cc.tpl"],
 mandatory = True,
),
 },
)

There are two special kinds of attributes:

● Dependency attributes, such as attr.label and attr.label_list,
declare a dependency from the target that owns the attribute
to the target whose label appears in the attribute’s value. This
kind of attribute forms the basis of the target graph.

● Output attributes, such as attr.output and attr.output_list,
declare an output file that the target generates. Although they
refer to the output file by label, they do not create a
dependency relationship between targets. Output attributes
are used relatively rarely, in favor of other ways of declaring
output files that do not require the user to specify a label.

Providers
Providers are pieces of information that a rule exposes to other
rules that depend on it and it’s the only mechanism to exchange
data between rules.
This data can include output files, libraries, parameters to pass
on a tool’s command line, etc.
It is analogous to a function’s return value and can be thought of
as part of a rule’s public interface
In our example, DefaultInfo provider is returned. It is a provider
that gives general information about a target's direct and
transitive files. Every rule type has this provider, even if it is not
returned explicitly by the rule's implementation function.
Outputs are be passed along in providers to make them available
to a target’s consumers.

def _hello_world_impl(ctx):
 out = ctx.actions.declare_file(ctx.label.name + ".cc")
 ctx.actions.expand_template(
 output = out,
 template = ctx.file.template,
 substitutions = {"{NAME}": ctx.attr.username},
)
 return [DefaultInfo(files = depset([out]))]

https://docs.bazel.build/versions/master/skylark/rules.html#providers

Providers, cont.
Since provider is just a named struct that
contains information about a rule, we can
define our own provider. This is done by calling
the provider function.

MyProvider = provider(
 doc = "My custom provider",
 fields = {
 "foo": "A foo value",
 "bar": "A bar value",
 },
)

Depset
Depsets are a specialized data structure for
efficiently collecting data across a target’s
transitive dependencies.
The main feature of depsets is that they
support a time- and space-efficient merge
operation, whose cost is independent of the
size of the existing contents.

def _hello_world_impl(ctx):
 out = ctx.actions.declare_file(ctx.label.name + ".cc")
 ctx.actions.expand_template(
 output = out,
 template = ctx.file.template,
 substitutions = {"{NAME}": ctx.attr.username},
)
 return [DefaultInfo(files = depset([out]))]

https://docs.bazel.build/versions/master/skylark/lib/depset.html

Using Hello world Build Rule

hello_world(
 name = "hello",
 username = "Alice",
 template = "file.cc.tpl",
)

cc_binary(
 name = "hello_bin",
 srcs = [":hello"],
)

Instantiation in BUILD file:

hello_world = rule(
 implementation = _hello_world_impl,
 attrs = {
 "username": attr.string(default = "unknown person"),
 "template": attr.label(
 allow_single_file = [".cc.tpl"],
 mandatory = True,
),
 },
)

hello.bzl:

Lab 6
Workspace & Build Rules

Objectives:
Create a repo rule and a build rule which
enable Bazel-native python code generation

Schedule 1. Introduction to Bazel
2. Using Bazel
3. Building Java, Python, Protobufs
4. CLI and ToolingDay 2

Schedule 5. Starlark, Genrules, Macros
6. Writing Rules
7. Platforms and Toolchains
8. Remote Features, Packaging,

DeploymentDay 2

Day 2
Extending Bazel

7. Platforms and Toolchains

Bazel can build and test code
operating systems, and system configurations, using

To help manage this complexity, Bazel has a concept of
 and , which exist to serve exactly

one purpose: to tell Bazel how to select the correct
 for a given action.

What are Toolchains?
Toolchains are a standard way for rule authors to

decouple their rule logic from platform-based
selection of tools.

Platforms
● Specified at the command line
● Are made up of a few constraints

Constraints
● Specify values for machine properties
● Assist bazel in selecting the correct

toolchain

7.1 Platforms

Platforms

Bazel recognizes three roles that a platform
may serve:

● Host: the platform on which Bazel itself
runs.

● Execution: a platform on which build
tools execute build actions to produce
intermediate and final outputs.

● Target: a platform on which final output
resides and executes.

● A platform is a collection of
constraint_values.

● A constraint_value is a property of a
machine, for example, the OS.

● A toolchain definition declares the
constraint_values of machines it can build
for (target platform) as well as the machines
it can run on (execution platform).

Built-in Constraints & Platforms

● The Bazel team maintains a repository with constraint
definitions for the most popular CPU architectures and
operating systems.

● These are located at
https://github.com/bazelbuild/platforms.

● Additionally, Bazel ships with a special platform definition:
@local_config_platform//:host.

● This is the autodetected host platform value - represents
the autodetected platform for the system Bazel is running
on.

https://github.com/bazelbuild/platforms

Platforms — Defining Constraints

Define a constraint_setting and some values
constraint_setting(name = "my_constraint")

constraint_value(
 name = "my_constraint_val_1",
 constraint_setting = ":my_constraint",
)

constraint_value(a
 name = "my_constraint_val_2",
 constraint_setting = ":my_constraint",
)

Step 1.

Platforms — Defining the Platform

Add a platform which uses this constraint
platform(
 name = "my_linux_x86",
 constraint_values = [
 "@platforms//os:linux",
 "@platforms//cpu:x86_64",
 ":my_constraint_val_1",
],
)

Usage @ CLI:

bazel build //:my_target --platforms=//:my_linux_x86

Step 2.

Step 3.

7.2 Toolchains

Toolchains

Toolchains allow Bazel to properly select the build tool or compiler to
use when evaluating a rule (such as java_binary or my_binary).

Toolchains are relied on by custom build rule definitions and are
decoupled for ease of use.

Toolchains — Defining a Toolchain (1 & 2)

Define the toolchain type in a
BUILD file

toolchain_type(
 name = "my_toolchain",
)

Step 1. Step 2.
Define an InfoProvider to hold
our constraint value (in a .bzl file)

MyInfo = provider(
 fields = [
 "my_attribute",
],
)

Toolchains — Defining a Toolchain (3A & 3B)

Define an implementation function for our rule:

def _my_toolchain_impl(ctx):
 return [platform_common.ToolchainInfo(
 myinfo = MyInfo(
 my_attribute = ctx.attr.my_attribute,
),
)]

Define a rule providing ToolchainInfo returning
our InfoProvider by calling the implementation
function.

my_toolchain = rule(
 implementation = _my_toolchain_impl,
 attrs = {
 "my_attribute": attr.string(
 mandatory = True,
),
 },
 provides = [platform_common.ToolchainInfo],
)

Step 3A Step 3B

Toolchains — Defining a Toolchain 4

Create a build rule which uses the toolchain

def _my_library_impl(ctx):
 info = ctx.toolchains["//:my_toolchain"].myinfo
 print(info.my_attribute)
…

my_library = rule(
 implementation = _my_library_impl,
 attrs = {
 # ...
 },
 toolchains = ["//:my_toolchain"]
)

Step 4

Toolchains — Defining a Toolchain 5

Instantiate the toolchain in the BUILD file

my_toolchain(
 name = "my_toolchain_impl",
 my_attribute = "some_value",
)

toolchain(
 name = "my_toolchain",
 toolchain_type = "//:my_toolchain",
 target_compatible_with = [
 "//:my_constraint_val_1",
],
 toolchain = ":my_toolchain_impl",
)

my_library(
 name = "example",
 # ...
)

Step 5

Toolchains — Defining a Toolchain 6

Register in the WORKSPACE:

register_toolchains(
 "//:my_toolchain",
)

Step 6

Step 7
Invoke via a Bazel command:

bazel build //:example --platforms=//:my_linux_x86

Toolchains — Defining a Toolchain 8

Invoking bazel build //:example --platforms=//:my_linux_x86
will result in the selection of the toolchain implementation which aligns
with my_constraint_val_1 as defined in the platform.

When the my_library target (with label //:example) is built, the
custom rule implementation will receive a MyInfo provider populated with
my_attribute=”some_value”

Lab 7
Platforms & Toolchains

Objective:

Create a custom toolchain, controlled
by constraints and platforms, which
is utilized by a build rule which
invokes a custom compiler included
in the repository

8. Caching, Remote Features,
Packaging, Deployment

Caching &
Remote Features

One word — Speed.

Unleashing the true power of Bazel
through Remote Cache and Remote
Execution

8.1 Local Caching

There Are Two Cache Types:

1. A local cache
2. And a remote cache

Smart Caching — Rebuild Only What Changed

modified
rebuilt

Source: Build Systems à la Carte

https://www.microsoft.com/en-us/research/uploads/prod/2018/03/build-systems.pdf

Caching in Bazel Speeding up the build

1. In-memory
Bazel keeps parts of the analysis cache in memory for fast incremental
builds

2. On-disk
Typically at ~/.cache/bazel

3. Or, on an external disk cache (via --disk_cache)
This method allows for sharing of the artifacts between WORKSPACES
as well as fast builds even after bazel clean.

Local Cache — Implementations

Caching in Bazel

On a fresh checkout or when sources have changed
considerably, Bazel must build the entire dependency graph for
a given target in order to populate the local cache.
● This can take quite a long time for large projects (hours!)
● Results in redundant rebuilds across a group of

engineers working in the same codebase

Local Cache — Disadvantages

8.2 Remote Caching

Caching in Bazel

1. Shared across many developers
2. Configured with --remote_cache=[your-cache-url]
3. Can be a HTTP-based caches:

a. Nginx with WEBDAV
b. GCS & AWS S3 blob storage

4. Can be a gRPC-based:
a. Bazel-remote — an OSS gRPC based cache
b. Flare® Cache - a blazing-fast managed cache SaaS

Remote Cache is...

Bazel Cache

● In the next few slides we demonstrate visually the propagation of
a locally built and cached target to a remote cache.

● Two developers are working on different projects, but they both
share two dependencies: C & D.

Remote Cache Examples

Remote Caching — Nothing is built yet

Remote Caching — Developer A Builds Her Targets

Remote Caching — Developer B fetches C&D from the cache

Bazel Cache

● Remote Cache is particularly effective on very large projects with
thousands of developers; in fact, probably necessary

● New Engineers starting up are able have near-instant local builds
because all artifacts are already cached on CI

● Ensures that only the absolute minimum work is performed each
time a target must be rebuilt

● Is a key ingredient in the “secret sauce” that makes Bazel such a
fast and effective build system for complex projects.

Remote Cache Conclusions

8.3. Remote Execution Features

Local Execution / Local Caching

Developer machines are over-provisioned, until they actually need to do some
work.

Remote Execution / Local Caching
The only hard limit on the number of cloud nodes used for build parallelization is
the topology of your build graph!

Remote cache makes everyone’s build faster: very small subset of actions
needs to be rebuilt.

Remote Execution / Remote Caching

Remote Features: Takeaways

● Remote cache: only rebuild the build sub-graph, affected by your code
change, all other artifacts are downloaded from remote cache pre-populated
by CI.

● Remote execution: once the minimal subset of actions is defined, execute
them with maximum parallelism possible for your build graph.

● Using remote cache without remote execution is able to bring 10x speed up
to the build, while using remote execution without remote cache will not.

8.4. Packaging & Distribution

Packaging Rules

rules_pkg can be used to create zip or tar archives from a set of inputs (which can be outputs of
other rules, such as compilers.

● pkg_zip — the most basic rule in this package
● pkg_tar — provides the most flexibility thanks to strip_prefix
● pkg_deb — often takes a pgk_tar as input

● pkg_zip tends to flatten folder structures in a way that is undesirable for
most programs.

● pkg_tar is able to work around this, but if a zip with a particular structure
is desired, one of the alternatives that follows is recommended.

https://github.com/bazelbuild/rules_pkg

Example: Packaging Python
src/main/python/hello/BUILD:

load("@rules_python//python:defs.bzl", "py_binary")

py_binary(
 name = "hello",
 srcs = ["hello.py"],
)

Usage:

● Run the program:
bazel run //src/main/python/hello:hello

● Create a zip:
bazel build //src/main/python/hello:hello --build_python_zip

Example: Packaging Java
src/main/java/com/flarebuild/hello/BUILD:

load("@rules_java//java:defs.bzl", "java_binary")

java_binary(
main_class = "com.flarebuild.hello.Hello",
name = "hello",
srcs = ["Hello.java"],

)

Usage:

● Run the program:
bazel run //src/main/java/com/flarebuild/hello:hello

● Create a jar:
bazel build //src/main/java/com/flarebuild/hello:hello_deploy.jar

Packaging Maven

There are a variety of ways to deploy
artifacts to a maven repository:

● via the built-in pom file generator,

● using a third-party maven build
rule, or

● writing a rule from scratch on top of
the maven binary, implementing
requirements specifically to your
organization.

The implementation of a custom maven rule is out of
scope here, but the following resources are a good place
to start for those interested in deploying artifacts to
maven repositories:

● Bazel Distribution:
https://github.com/graknlabs/bazel-distribution

● Pom Gen:
https://github.com/salesforce/pomgen

● Bazel’s default pom file support via
bazel-common

https://github.com/graknlabs/bazel-distribution
https://github.com/salesforce/pomgen
https://github.com/google/bazel-common/blob/master/tools/maven/pom_file.bzl

Packaging With Docker

rules_docker repository enables Bazel
to create Docker images with our
binary targets baked right in. This is
the recommended approach in modern
projects.

The following rules are available:

● container_image

● container_bundle

● container_import

● container_load

● container_pull

● container_push

https://github.com/bazelbuild/rules_docker

container_pull
● A WORKSPACE rule which allows pulling down an image from an external docker

registry.

● It’s image target can later be used as a base image in other docker rules.

● Corresponding image labels will reference the image as, eg. “@debian10//image” and
“@java_distroless//image”

container_pull(
 name = "base",
 registry = "gcr.io",
 repository = "my-project/my-base",
 # 'tag' is also supported,
 # but digest is encouraged for reproducibility.
 digest = "sha256:deadbeef",
)

container_pull, ctd.

container_pull(
 name = "debian10",
 # tag = "10.5-slim",
 digest = "sha256:e0a33348ac8cace6b4294885e6e0bb57ecdfe4b6e415f1a7f4c5da5fe3116e02",
 registry = "index.docker.io",
 repository = "library/debian",
)

container_pull(
 name = "java_distroless",
 # tag = "11",
 digest = "sha256:19ebdd790a1cd1592036644543c50f6b2d133e631ae090460701089ab0962d41",
 registry = "gcr.io",
 repository = "distroless/java",
)

container_image

An equivalent Dockerfile:

FROM debian:10.5-slim
ADD data/hello.txt /data/hello.txt
CMD cat /data/hello.txt

src/main/docker/BUILD:

container_image(
 name = "hello_image",
 # References container_pull
 # rule from the WORKSPACE file
 base = "@debian10//image",
 cmd = [
 "cat",
 "/data/hello.txt",
],
 directory = "/data",
 files = ["data/hello.txt"],
)

container_image is the most basic packaging rule that builds a Docker image:

container_image, ctd.
A more useful example of container_image: binary produced by a target from another package.

src/main/docker/BUILD:

container_image(
 name = "java_hello_image",
 # References container_pull from WORKSPACE (above)
 base = "@java_distroless//image",
 entrypoint = [
 "/usr/bin/java",
 "-cp",
 "hello.jar",
 "com.flarebuild.hello.Hello",
],
 files = ["//src/main/java/com/flarebuild/hello:hello.jar"],
)

An equivalent Dockerfile:

FROM gcr.io/distroless/java:11
ADD bazel-bin/src/main/java/com/flarebuild/hello/hello.jar /hello.jar
ENTRYPOINT ["/usr/bin/java", "-cp", "hello.jar", "com.flarebuild.hello.Hello"]

container_push
An executable rule that pushes a Docker image to a Docker registry on bazel run.

src/main/docker/BUILD:

container_push(
 name = "push_hello",
 format = "Docker",
 image = ":hello_image",
 registry = "index.docker.io",
 repository = "$(image_repository)/hello_image",
 tag = "{BUILD_TIMESTAMP}",
 tags = ["manual"],
)

Usage (requires preliminary docker login):

bazel run //src/main/docker:push_hello \
 --define image_repository=<your docker hub id here>

lang_image
Language rules (f.e. py_image, java_image, cc_image) are based on container_image and produce the
same outputs.

As the documentation states:

“The idea behind these rules is to make containerizing an application built via a lang_binary rule
as simple as changing it to lang_image”

src/main/python/hello/BUILD:

py_image(
 name = "hello_image",
 srcs = ["hello.py"],
 # Need to specify main
 # explicitly because the
 # name is different
 main = "hello.py",
)

Loading Docker Toolchain
load("@bazel_tools//tools/build_defs/repo:http.bzl", "http_archive")

Download the rules_docker repository at release v0.14.4
http_archive(
 name = "io_bazel_rules_docker",
 sha256 = "4521794f0fba2e20f3bf15846ab5e01d5332e587e9ce81629c7f96c793bb7036",
 strip_prefix = "rules_docker-0.14.4",
 urls = [
 "https://github.com/bazelbuild/rules_docker/releases/download/v0.14.4/rules_docker-v0.14.4.tar.gz"
],
)

load(
 "@io_bazel_rules_docker//repositories:repositories.bzl",
 container_repositories = "repositories",
)

container_repositories()

load("@io_bazel_rules_docker//repositories:deps.bzl", container_deps = "deps")

container_deps()

load(
 "@io_bazel_rules_docker//repositories:pip_repositories.bzl",
 "pip_deps"
)

pip_deps()

load(
 "@io_bazel_rules_docker//container:container.bzl",
 "container_pull",
)

container_pull(
 name = "java_base",
 # 'tag' is also supported, but
 # digest is encouraged for reproducibility.
 digest = "sha256:deadbeef",
 registry = "gcr.io",
 repository = "distroless/java",
)

https://github.com/bazelbuild/rules_docker/releases/download/v0.14.4/rules_docker-v0.14.4.tar.gz

Configuring Docker Toolchain

load(
 "@io_bazel_rules_docker//toolchains/docker:toolchain.bzl",
 docker_toolchain_configure = "toolchain_configure",
)

docker_toolchain_configure(
 name = "docker_config",
 client_config = "<enter absolute path to your docker config directory here>",
 docker_flags = [
 "--tls",
 "--log-level=info",
],
 docker_path = "<enter absolute path to the docker binary (in the remote exec env) here>",
 gzip_path = "<enter absolute path to the gzip binary (in the remote exec env) here>",
 gzip_target = "<enter absolute path (i.e., must start with repo name @...//:...) to an executable gzip target>",
 xz_path = "<enter absolute path to the xz binary (in the remote exec env) here>",
)

● Call docker_toolchain_configure to override the default docker toolchain configuration.
● This call should be placed BEFORE the call to "container_repositories" below to actually override the

default toolchain configuration.
● Note this is only required if you actually want to call docker_toolchain_configure with a custom attr.

8.5. Continuous Integration

Best Practices for CI
● Use the same VM/container image for running bazel
● Use build cache

○ can be remote cache
○ can be local cache preserved by CI system
○ only CI should have write access to the cache to prevent spoiling from

hosts with another toolchain versions
● CI shouldn't use tools other than bazel build, bazel test, bazel run so every

engineer may replicate CI processes locally with bazel
● Preserve bazel repository cache to avoid re-downloading external

dependencies.

GitHub Actions workflow example
Notes about Github Actions configuration shown here:

1. We activate Github Actions caching in order to be able to
cache external dependencies between builds.

2. We supply Bazel with CLI flag overrides via the file
.bazelrc.user which we are loading (if exists) from
.bazelrc.

3. The flags redirect Bazel’s cache to the directory that will be
included in the Action Cache once the build succeeds.

4. By using .bazelrc.user we ensure that all Bazel invocations
will be using the same disk cache.

5. We use a specific docker image with the exact Bazel version
and set of host toolchains for bazel steps

.github/workflows/build.yml:

steps:
 - uses: actions/checkout@v2

 - name: Restore repository cache
 uses: actions/cache@v2
 with:
 path: repository_cache/
 key: bzl-r-cache-${{ hashFiles('WORKSPACE') }}

 - name: Install .bazelrc for CI
 run: |
 cat <<EOF > .bazelrc.user
 build --repository_cache repository_cache/
 build --remote_cache=grpcs://remote.cache.tld
 EOF

 - name: Bazel Build
 uses: docker://gcr.io/cloud-builders/bazel:3.4.1
 run: |
 bazel build //...:all

8.6. Bazel “In Pictures”

“Bazel in Pictures” — A Diagram Repo

An open source project that aims to create helpful diagrams that aid in
learning and understanding Bazel for both beginners, and Custom Rules
Authors.
The project is work in progress.

https://github.com/bazelruby/bazel-in-pictures

Build Phases

Rules
Data Model

Build Execution Context (1 of 2)

Build Execution Context (2/2)

Repository Context (1 of 2)

Repository Context (2 of 2)

Lab 8
Remote Features

& Packaging

Objectives:
● Try out remote features
● Build, push, and pull a docker image

THE END.

Thanks!
Your friends @ Flare.Build

