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Abstract

In this thesis we shall discuss and analyze different approaches to conditioning and
their applications.

The traditional Measure-Theoretic graduate-level approach is examined and
compared to a relatively new approach that is based on the construction of families
of regular conditional probabilities. The latter one has many advantages over the
traditional, being more intuitive, simple and applicable to real-life problems, while
remaining rigorous and quite general.

As an important followup to conditional probabilities, the concept of condi-
tional density and distribution functions is attentively studied in many details,
using both approaches as starting points.

Several examples and applications of the methods are studied and analyzed.
The analysis part was partially accomplished using statistical packages MINITAB
and S-PLUS. S-PLUS was also used to graph the results. The numerical integ-
ration was done in algebraic package MAPLE-V. The rest of the analysis and
simulations were conducted using written-on-the-fly compact programs in C.
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“..Well, in our country”, said Alice, “you’d generally get to somewhere else — if
you ran very fast for a long time, as we’ve been doing.”

“A slow sort of country!” said the Queen. “Now, here, you see, it takes all
the running you can do, to keep in the same place. If you want to get somewhere
else, you must run at least twice as fast as that!...”

Alice and the Red Queen
“Through the Looking Glass”
Lewis Carroll
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1 INTRODUCTION 4

1 Introduction

Conditional probability arises naturally in elementary probability theory. For two

events A and B, the probability of an event A given that event B has occured is

defined as

P(AN B)

—BrE (1)
P(B)

if the conditioning event B has a non-zero probability. Although this definition
makes a lot of sense in many intuitive examples, it is very important to investigate
whether the restriction P(B) # 0 is really necessary.

In reality, very often we would like to be able to handle conditional probabilities
where the conditioning event is known to have probability zero. As an example,
suppose we wish to introduce or define the conditional distribution function of two
continuous random variables. Applying the above elementary definition (1) to the
distribution function we run into various sorts of problems. Indeed, let X and Y
be two random variables of continuous type with ranges Rx and Ry respectively.
Then, according to the elementary definition of the conditional probability, we can
write

P(A|B) =

Flyle) = P(Y <y|X =2)

PY <y, X=2z)/P(X =2)
= 0/0
= ?

.29

since P(X = z) =0 for all z € R, as X is continuous. Thus, Definition (1) is not
capable of dealing with such cases, which are in no sense degenerate!

As Kolmogorov (1933, page 51) noted, “...the concept of conditional probability
with regard to an isolated hypothesis whose probability equals 0 is inadmissible.”
Unfortunately, the rigorous approach to this problem is far beyond boundaries of
elementary probability theory. It is aimed in this work to give a summary of two
different approaches to defining and using conditional probabilities with the least
number of restrictions. The following approaches will be discussed:

1. The measure theoretic approach. This can be thought of as a traditional
graduate-level approach which requires some broad knowledge of measure
theory.

2. Approach via Regular Conditional Probabilities. The approach was de-
veloped by J. Chang and D. Pollard (Yale University, 1993) and reconstruc-
ted by J. Kupka (Monash University, 1994) so that it contains a rigorous
treatment of conditional probabilities with almost no measure theory and is
introduced via the concept of expectation; hence it should be suitable for
teaching at the undergraduate level.
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In general, it is a deep theoretical problem to provide a universal rigorous
definition in place of (1). It requires a lot of abstract mathematics. We can,
however, approach the problem from a more particular point of view — we aim
to define P(A|X = z) for some random variable X and any event A from our
event space (). Thus we will narrow B to an event {X = z}. And yet the task is
very important because, for example, the conditional distribution function of two
continuous random variables mentioned above can be defined as

F(ylz) = P(Y < y|X =1),

which does not make sense unless P(A|X = z) is defined for a continuous random
variable X.

The basic idea behind approaches 1 and 2 is the same: if the traditional condi-
tional probability of an event A given X = z is considered by fixing X at z and,
perhaps, varying A, a more general approach is obtained by a change of viewpoint,
namely, by considering P(A|X = z) for fized A as a function of z. However, dif-
ferent treatments of this idea lead to different constructions which will be studied
here.
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2 Notation and Basic Theorems

Before proceeding to conditional probabilities, we should introduce the notation
used throughout the thesis.

2.1 Measure-Theoretic Background

Let F be a collection of subsets of a set 2. Then F is called a o-field if Q € F
and F is closed under complementation and countable union, that is,

1. leF
2. Ae F=>A°€eF
3. Al,Ag,...€f=>U?§1A,‘€}'

The smallest o-field containing all n-dimensional intervals (rectangles) (a,b]
with a,b € R", is called the class of Borel sets of R", written B(R™) or just B. A
measure y on a o-field F is a non-negative extended real-valued countably additive
function x on F. Explicitly, 4 : F — [0, 4+00] and whenever A;, A,, ... form a finite
or countably infinite collection of disjoint sets in F we have u (U, An) = 3, u(An).
p is called a probability measure if u(Q) = 1. The triple (2, F, u) is then called a
probability measure space. If (2, F) is a measurable space and f : @ — R™, then f
is said to be Borel measurable if f is measurable relative to the o-fields F and B,
ie. f~1(B) € F for each Borel set B € B. When n = 1, a sufficient condition for
Borel measurability is that {w : f(w) > ¢} € F for any real ¢. This is sometimes
taken as a definition in the one-dimensional case. A certain condition is said to
hold almost everywhere with respect to the measure p (written a.e. [u]) if there is
at most a set B € F of yu-measure 0 such that condition holds outside of B. In
other words, almost everywhere means “everywhere, with a possible exception of
a set of measure 0”.

A nonnegative, finitely additive set function x on the field F is said to be o-
finite on F if and only if Q can be written as Un=; A, where the A, belong to F
and p(A,) < oo for all n. If u is a measure on the o-field F and X is a signed
measure on F we say that A is absolutely continuous with respect to u if and only
if u(A) = 0 implies A\(A) =0 (A € F).

The following two theorems will be used in the measure theoretic context of
the thesis:

Theorem 1 (Radon-Nikodym) Let u be a o-finite measure and A\ a signed
measure on the o-field F of subsets of Q). Assume that )\ is absolutely continuous
with respect to u. Then there is a Borel measurable function g : @ — R such that

AA) = /A gdu, forall A€ F.

If h is another such function, then g = h a.e. [u].
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Theorem 2 (Fubini) Let @ =Qy x Qy, F = F; x Fy, = py X pg, where Wi 18
a o-finite measure on F;, j = 1,2. If f is a Borel measurable function on (Q,F)
such that [ fdu exists, then

[ = [ | /. Fdpad

_/;12 /91 fdprdus .

2.2 Probability Theory Framework

A sample space ) is a set whose points are in one-to-one correspondence with the
possible outcomes of a random experiment. Let F be a o-algebra on . An event
A is defined to be an F-measurable subset of ), i.e. A € F. A probability P on Q
is a probability measure on (2, F), as defined earlier.

To simplify the meaning of an event we can say that among all subsets of 2,
most will be measurable but a few won’t. We then call all the measurable subsets
of ) events and ignore non-measurable subsets.

A random variable X on a probability space (2, F, P) is a Borel measurable
function from Q onto Rx C R3. The set Ry is called the range of X. A random
variable X is said to be discrete if there exists a set E with P(X € E) = 0 such
that the range of X on the compliment E° is finite or countably infinite. The
distribution function of a random variable X is the function F = Fy from R to
the interval [0,1] given by F(z) = P{w : X(w) < z}, z € R. The probability
function px of a discrete random variable is defined to be px(z) = P{X = z},
z € R. The probability measure on R induced by a random variable X is defined
by Px(A) = P{X € A} for all A € B(R). A random variable X is said to be
absolutely continuous if there exists a nonnegative real-valued Borel measurable
function f on R such that F(z) = [*_ f(t)dt, z € R, where the dt denotes
integration with respect to Lebesgue measure. Such a function f is then called
a density function of X. A random variable X is said to be continuous if its
distribution function Fx is continuous on all of R.

And finally, here are several propositions which will be used later. A random
variable X is continuous if and only if for all z € R we have P(X = z) =
0. If a random variable X is absolutely continuous, it is also continuous. The
converse of this is not true, since continuity of the distribution function Fy does
not automatically imply the existence of a density function.

3R % RU {00}
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3 Measure-Theoretic Approach

3.1 Definitions

Theorem 3 Let X be a random variable and let A be a fizred event in Q. Then
there is a nonnegative real-valued Borel measurable function g4 such that for each
set B € B*.

P({X € BYn A) = [ ga(z)dPx(z)

Further, if h is another such function then g = h almost everywhere [Px].

Proof:

Let 4 = Px and A(B) = P({X € B} N A) for B € B. Then ) is a finite
measure on B and absolutely continuous with respect to u, since Px(B) = 0
implies P({X € B} N A) = 0, hence A(B) = 0. The result then follows from the
Radon-Nikodym theorem. o

The above theorem is a key to the measure-theoretic definition we need. Intu-
itively, conditional probability P(A|X = z) should satisfy

P{X € B}n A) = /B P(A|X = z)dPx(z)

and since the theorem tells us that such a function g4(z) exists and is essentially
unique, we may define the conditional probability P(A|X = z) to be the function
ga(z). Thus we have,

Definition 3.1 The conditional probability P(A|X = z) is defined to be g4(z).
It is essentially unique for a given A.

This definition is indirect: to show that some probability is conditional we
should first guess the function gs(z) and then verify the equation of Theorem 3.
The first step may require a good deal of intuition, the second — some messy
integration. Thus, while the above definition is rigorous and fills the gap, it is not
very intuitive and not easy to use without some knowledge of measure theory.

Anyway, since we still have an abstract definition of conditional probability, we
can ask ourselves whether the old-fashioned P(A|B) = P(AN B)/P(B) coincides
with the above definition for “normal” cases, i.e. those for which P(B) > 0. We
can illustrate that this is so by considering a discrete random variable X over it’s
essential range defined by Ry = {x € R: P(X =z) > 0}.

“By dPx(z) we mean integration with respect to the probability measure induced by X
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3.2 Discrete Case

Let X be a discrete random variable with probability function px defined by
px(z) = P(X = z). Note that px(z) # 0 for all z € Ry, so the “traditional”

definition
P({X =z} n A)
P(X =z)
makes sense over Rx. We wish to show that it satisfies the equation of Theorem 3
and thus coincides with the newly introduced g4(z).

To show that, we start with P({X € B} N A) for an event A C Q and B being
a Borel subset of R.

P(A|X =2) =

P{X eB}nA) = Y P{X=z}nA)

z€B

- z;P(AlX =z)P(X = z)
z€

= Y P(A|IX = z)px()
z€EB

- /B P(A|X = z)dPx(z)
from which it follows that
ga(z) = P(A|X = z)

since g4(z) is uniquely determined on Rx by the Theorem 3. Indeed, if P(X =
z) > 0, then g = h a.e.[Px] means simply that g(z) = h(z) for all z € Rx. Hence,
when X is discrete and the probability that X = z is not zero, the conditional
probability defined above coincides with the traditional definition. O

It is important to mention that the integral [g f(z)dPx(z) is taken with respect
to the measure Py induced by X, so that in this discrete case the integral becomes

EIGB f(-T)PX (.’B)

3.3 Bivariate Case
3.3.1 Conditional density function

This section is devoted to another very important application of Definition 3.1.
Here we will be dealing with two jointly continuous random variables X and Y
with ranges Rx C R and Ry C R. Let also the distribution function of X be F
and let the distribution of Y depend on a sample value = of X. And finally, let X
and Y have joint density function fxy and marginal densities fx and fy.

Our aim is to rigorously define the conditional density function h(y|z). Al-
though the task may look simple, many books at the undergraduate level introduce
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the conditional density function as we’ll do below, but very rarely give a justific-
ation in terms of probabilities. See, for example, Hogg and Craig (1970, page
64).

Definition 3.2 The conditional density of Y given X = z is defined to be

hlylz) = %()y) @)

where fx(z) # 0 and 0 otherwise.

There is nothing wrong with this definition in the sense that we have introduced
a new symbol h(y|z) and called it a “conditional density”. However, we would
also like to know whether this definition is related to the meaning of conditional
probability as defined earlier.

To answer this question we must understand what the desired properties of the
density h(y|z) are. So let B,C € B(R) and let A = {Y € C} € F. First of all,
since h(y|z) is a density function of Y given that X = z we should expect that
P(Y € C|X = z) can be obtained by integrating h(y|z) with respect to y over C,
ie.

PAIX=2)=P(Y €C|X =z) = /Ch(yl:z)dy.

This equation is, therefore, the required connection with conditional probability
which is defined in terms of Definition 3.1. So if we can prove the above equation
we can justify the existence and meaningfulness of the symbol A(y|z) and thus,
Definition 3.2.

Keeping in mind that A was defined as the event {Y € C}, we need to show
that

P{X eB}n{Y eC}) = /B [ /C h(yla:)dy] Fx(2)dz, 3)

thus proving that g4(z) = P(Y € C|X = z) = [, h(y|z)dy as stated above.
Starting with the left-hand-side of (3) and noting that (2) can be rewritten as
fxv(2,y) = h(y|z) fx(z) where fx(z) # 0 we get

P{X eB}n{YeC}) = P(X,Y)eBxC)
= /Bxc fxy(z,y)dydz

= /B /c fxy(z,y)dydz by the Fubini Theorem

= [, [ hwlo) fx(z)dyde

[, L pwlz)dy) sx(e)da
as required to establish P(Y € C|X = z) = [, h(y|z)dy. O
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Note, that C' and B above are one-dimensional subsets of R. A slightly more
general result may be obtained by considering C as a subset of R2, so that event
A becomes A = {(X,Y) € C}. So let C(z) = {y : (z,y) € C} be the projection
onto the y-axis of the intersection of the two-dimensional region C and the line
{X = z}. The regions are shown on the Figure 1.

y A

cecccdecccecen--

Figure 1: Regions B x R and C in the zy-plane.

To prove that
P(AIX =2) = P((X,Y) €C|X = z) = /C o Hl)dy,

we proceed as before,

P{X € B}n{(X,Y)eC}) = PH{(X,Y)e BxR}n{(X,Y)eC})
P((X,Y)e (BxR)NC)

= Joeape Prr(ev)ivds
= -/B c(z) fxy(z,y)dydz (Fubini Theorem)
= /B /C(,) h(y|z) fx (z)dydz
- /B [/C(z) h(ylz)dy] fx(z)dz
= [, PAIX = 9)fx(e)de

as claimed. :

The above approach to the definition of the conditional density function of
two continuous random variables is used in Ash (1972), however the author only
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considers the A = {(X,Y’) € C} case where he makes very few or no justifications.
For example, Ash assumes and then uses the formula

P(Y €C@)X =)= [ o M) fx(2)da.

However, according to Definition 3.1 we only know how to handle a fized (with
respect to z) event A. The event {Y € C(z)} is no longer fixed — it varies with
z, so the conclusions of this assertion can lead to unjustified or wrong results.

We did not use this assertion and yet, justified every single step above. So the
results should be clear and less confusing.

To summarize, the aim of this example was to produce a meaningful definition
of conditional density of two continuous random variables and establish a relation
between the density and conditional probability in the sense of Definition 3.1.

3.3.2 Reverse conditioning

In the light of the above discussion, we can solve the following interesting problem.

Let X be an absolutely continuous random variable. If X = z, let Y be
another absolutely continuous random variable with conditional density fy|x (y|z).
We already know how to find P(Y € C|X = z); the expression P(Y € C|X = z)
is then interpreted as a probability of an event determined by Y given that some
information about X is known.

Conversely, it would be interesting to know whether the knowledge of Y can
tell us something about X. So we aim to find P(X € B|Y = y) in this section.

Since X and Y are jointly absolutely continuous, their joint density function

exists and satisfies frr(@9)
_Jxy(z,y
fy|x(y|$) e fX(z) .

Since the conditional density is defined by the above formula independently of any
experiment, we can simply interchange z and y to get

frx(y,z) _ fxr(z,9)
fr(y) fr(y)

since, clearly, fy,x(y,z) = fx,y(z,y) for all z,y € R2 Because also

fr(y) = /fx,Y(t,y)dt,

fxy(zly) =

we can write
ol = IxX@) frix(ylz)
Fxw(=ly) = I fx(t) frix (ylt)dt )

and hence, finally,

s fx(z) fyix (y|z)
PIX€BlY =y = /B ffx(t)fY|x(y|t)dtdm'
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In fact, the above formula (4) is the continuous prototype of the well-known
Bayes Rule, which, in the discrete case, states

v\ PY=ylX=2)P(X =2)
P(X—:cIY—y)—Etp(y=y|X=t)P(X=t).

This formula gives a probability for a “cause given effect” — the reverse of the
usual “effect given cause” model.

3.4 Example

This section is devoted to a simple and intuitive example to demonstrate another
application of Definition 3.1. Later, we shall approach this example from another
starting point — with a different definition of conditional probability.

Let X be a uniform random variable between 0 and 1. Once the value z of
X is known, let Y be a binomial random variable with probability of success
p = = and some fixed number of trials n. Let’s denote by y a sample realization
of Y. Suppose that we are interested in the unconditional distribution of Y, i.e.
P(Y =1) for some fixed i =0,1,...,n.

To solve the problem, we first note that fx(z) = 1if z € [0,1] and 0 otherwise.
Also, we intuitively assume that for A = {Y = y},

ga(z)=P(Y =y|X =2z) = (Z) V(1 — z)"Y

is the conditional probability function of Y given that X = z.
Then, for ¢ € Ry, for A = {Y = i} and B = R, the required probability
distribution can be calculated as follows:

P(A) = P({X € B}n A)
- /B 9a(z)dPx(z)

- / P(Y = i|X = z) x 1dz,
[0.1]

1 : :
hence, P(Y =1) = /; (n) z'(1 — )" x ldz

1

_ n! ><I"(i-i-l)[‘(n—i+1)><1
Mn—d)! T(i+l+n—i+1)
n! il(n — i)!
in—1)! " (n+1)
1

n+1’

by recognizing the Beta(i + 1,n — i + 1) density function under the integral sign.
Hence Y is rectangular (or uniform) on {0,1,...,n}.
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3.5 Summary

The measure theoretic approach provides a very large set of tools for probability
theory. It is, essentially, the only way of making a rigorous approach to probability
and in particular to conditional probabilities. It was shown that the approach
described above leads to expected and known results in simple cases (e.g. discrete),
while filling the gap in previously undefined cases (e.g. continuous).

From another point of view, even if it is necessary to carry out research or
experiment in probability with understanding and rigor, learning the measure the-
oretic background may be too time consuming. For that reason, the introduction
of some other approach may be useful.

As we shall see, the approach via Regular Conditional Probabilities does not
require knowledge of measure theory, while being both intuitive and rigorous. We
shall now proceed to the next section, which is devoted to this.
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4 Regular Conditional Probabilities

4.1 Definitions

Definition 4.1 Let X be a random variable on (2, F, P) with range Rx. A
regular conditional probability for X is a family {P;}.cr, such that

1. Vz € Rx, P, is a probability on (Q, F)

2 Vze Ry, P X #2)=0

3. VA€ F, P(A) = E[ga(X)], where ga(z) = P:(A).
The symbol P(A|X = ) is then identified with Ps(A).

Also, to avoid the use of superfluous g4 notation, we shall often write

P(A) = El[ga(X)]
= EPx [gA(z)]
= Ep,[P(A|X = z)]
= EPX [Pz(A)]
- / P(A|X = z)dPx(z)

This approach does not require knowledge of measure theory; one must only
be familiar with the concept of expectation to understand the definition. This
approach is also more intuitive and provides better tools for calculating and finding
conditional probabilities, as will be illustrated.

Terminology: any model that makes assumptions about regular conditional
probabilities will be referred to as an rcp model.

Given the above definition, it is important to verify whether P, satisfies the
condition of Measure-Theoretic Definition 3.1. This result is established by the
following lemma, which will also be used later.

Lemma 4 For a fized A € F and for all B € B(R),
P(X € B, A) = /B P,(A)dPx(z).

Proof:
We have,

P(X € B,A) = PJ(X € B,A,X=z)+ P.(X € B,A,X #z)
= P(X€B,AX=z)40
= Py(A)Ip(z),
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where Ig(z) is the indicator function® of B. This is true because

(X=z) ifz€eB

(XGB,X=a:)={® ifog B

It now follows that
P(X € B,A) = / P.(X € B, A)dPx(z)
= [ P(4)I5(a)dPx (a)
- /B P.(A)dPx(z),
S sagined. 0

Therefore, P;(A) is the same as g4(z) introduced in the Definition 3.1.

4.2 Discrete Case

As before, the natural thing to do now is to ask whether the rcp model coincides
with elementary conditional probabilities for a discrete variable X with essential

range Rx = {z : P(X =z) > 0}.

Theorem 5 For a discrete random variable X with range Rx = {z : P(X =
z) > 0} and an event A from Q the following holds for every zo € Ry

Py(A) = ———PI(,’?)’(X::C:;).

Proof: We first note that if z # zo then the following relations hold:
AN{X =z} C AN{X #2z} C {X # =z},
hence, by properties (1) and (2) of the definition,

0< P(AX=20) < Py(AX+#2)
Pi(X # z)
0.

I IA IA

Now, combining property (3) and the above, we get
P(A, X =z0) = Y P(A,X =z0)px(z)
= PIO(A,X = IL'Q)P(X = 1’0)

5The indicator function of a set B is defined by

_f1 ifzeB
IB(’)‘{O ifz¢B
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Hence, ( )
o A,X =T
PID(A,X = .’l‘o) = m)—-

Finally, since by (1) P, is a probability, we must also have

Pz‘o(A) = P-‘co(A’X = x0)+on(A’X # Zo)
= P (A, X =120)+0
P(A,X = xo)/P(X = .’Do).

as claimed. 0O

Corollary 6 For any discrete variable X, the family of rcps {P:}zery ezists
and is uniquely determined by properties (1), (2) and (3). It coincides with the
conditional probabilities defined in the elementary sense.

4.3 Conditional Distributions and Densities

In this section we will show how conditional distributions and densities of random
variables can be derived from the rcps. We will also demonstrate an application of
the approach to derivation of the formula for ¢ distribution — the fastest known
way to get to the formula.

4.3.1 Single event conditioning

Let us consider probabilities of events given that something of non-zero probability
has already occurred. We shall call it single event conditioning. So let H be an
event with P(H) > 0°. If A is another event, then we know that the elementary
definition holds, so we may write

P(ANH)

Having H fixed, we regard Py as another probability function on (£2,F).
Hence, if Y is a discrete random variable with respect to P, it will be discrete
with respect to Py. Similarly, if Y is an absolutely continuous random variable
(P), then Y is absolutely continuous (Py). If, however, Y is a mixed random
variable with respect to P, it can be anything in Py.

For example, let us define a mixed random variable Y as uniform between
0 and 1 with probability §, 2 with probability 1 and 3 with probability 3. Let
H = ({Y =2} U{Y = 3}) be fixed. Observe that now Y is discrete with respect
to Py, since the Py-probability that Y =2 or Y = 3 is 1, and the Py-probability
that Y is neither 2 nor 3 is zero. Hence Y may be regarded as a discrete random

®It is important to remember that P(H) > 0 throughout this section.
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variable with essential range Ry = {2,3} and with Py-probability distribution
given by Py(Y =2) = ; and Py(Y =3) = 1.
We may then define a distribution function given H as

Fy(y|H) = Pu(Y <y)
P(Y <y,H)
P(H)

and if this distribution function has a density, we can call it fy(y|H) — the
conditional density of Y given H.

It is interesting to note that generally there is no relationship between the P-
density fy(y) and the new conditional density fy(y|H). The only exception is the
case when H = {Y € C}". Here, the relationship is clearly

/P(Y €C) ifyeC
otherwise.

fr(lY € C) ={ gy(y)

4.3.2 Arbitrary random variable conditioning

We can transfer the ideas of the previous section to the case when H = (X = z)
for an arbitrary random variable X, in which case the probability of H may be
zero.

So let us consider the family of rcps {P;}sery. In general, the family {P,} is
an abstract mathematical object which only satisfies the three defining properties.
If, however, we have a particular experiment in which z is found at the Stage 1
and treated as a parameter at the Stage 2, then P, can be interpreted as a “revised
probability P” — with knowledge that something (namely, X = z) has already
happened. This idea was already demonstrated in the uniform-binomial case of
Example 3.4 and will be discussed in more details later.

Let now Y be another random variable. As above, we can define a conditional
distribution function of Y given z as

Fyix(ylz) = P(Y <y) = P(Y < y|X = )

and then fy|x(y|z) is defined as the density for Fy|x(y|z), if such density exists.
As we shall show, when X is absolutely continuous, the density will exist if and
only if X and Y are jointly absolutely continuous. This is precisely the context in
which we may introduce the concept of conditional density function.

4.3.3 Conditional density function

In this section we shall construct an approach in which the formula (2) for the
conditional density will appear as the only reasonable choice for definition of con-
ditional density.

"This was the case with the example above, since H was defined as (Y € {2,3}). There is no
density with respect to Py, however, in this case.
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Before we turn to our construction, let us state two Conventions which are
vital for understanding the further development.

Convention 1 In a probability model in which f(y) is thought of as a density for
Y, we are specifying the formula

P(Y €0) = [ f()dy
for calculating P(A) for A= (Y € C), but for no other A.

Convention 2 Similarly, in a probability model in which a function h(z,y) (z €
Rx, y € R) is thought of as a conditional density for Y given X, we are specifying
the formula

o = ,y)d
(¥ €C) = [ h(z,y)dy
for calculating the P,(A) values for A= (Y € C) and for no other A.

These two Conventions basically state the properties that we want the density
function to have. It’s interesting that it is sufficient to understand the meaning
of the density function in the light of the two Conventions in order to derive the
usual defining formula, as will be shown.

So let fyx(y|z) be the function satisfying the formula of Convention 2 (ex-
istence of such a function will be proven later in this section) and let X have a
density function fx(z). Then, according to property (3) of the definition of regular
conditional probabilities, we must have,

P(Y € C) = Ep[P(Y € C|X =1z)]
= /R P,(Y € O)fx(z)dz
i /R ( /C fylx(ylw)dy) fx(z)dz
= /R /CfY|X(wa)fx(:c)dydz
/c (/R fY'x(ylx)fx(m)dx) dy, (Fubini Theorem)

which by Convention 1 implies that

fr) = [ frx(vle)fx()da. (5)

Since earlier in the chapter we assumed that X and Y are jointly absolutely con-
tinuous, their joint density function fxy(z,y) exists and so we also have

1) = [ fxr(z,y)da. ©)
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Since both (5) and (6) are true for all y, we may think that the integrands are
equal as well. In other words, we conjecture the formula

_ fX.Y(zay)
frix(ylz) = N 2% (7)

which is precisely equation (2) which defined the conditional density function in
the Measure-Theoretic part earlier.
We shall now use rcps to verify this relationship, by showing that

fxy(z,y) = frix(ylz) fx(z)
is indeed a joint density function for X and Y. So we must check that
a b
PX<aY<t)=[ [ frx(yle)fx(z)dydz
Let A be the event (X < a,Y < b). We then note, that

P (X<aY<b = P(X=z,X<aY <h)

. P(X=2,Y<0b) ifz<a
- 0 ifz>a
_ [ P(Y<b) ifr<a
- 0 ifz>a

We can then use the properties of rcps {P,} to calculate P(A), as follows:
P(A) = [ P(A)fx(z)de
/R P.(X < a,Y < b)fx(z)dz

/_ ; P.(Y < b)fx(z)de

= /_:o (/—”w fylx(ylx)dy) fx(z)dz
- / ; /_; frix (ylz) fx(z)dydz

which shows that the integrand is in fact the joint density of X and Y, as required.

So we have shown that ifan fy|x(y|z) function exists and satisfies the condition
of Convention 2, then fy|x(y|z)fx(z) is a joint density function of X and Y. To
prove the converse, i.e. that if fxy(z,y) is a joint density then fxy(z,y)/fx(z)
is a conditional density satisfying Convention 2, we need to verify that

Py €)= [ Iy,
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at least a.e. [Px]. The LHS and the RHS of the above equation are functions of
z, say f(z) and g(z). To establish the equality f(z) = g(z) a.e. [Px] it suffices
to show that for all B € B(R),

[, f@3dPx(2) = [ g(@)dPx(a).

So, integrating the RHS for an arbitrary B € B(R) we get

o (e e et = [ [ rxvternini
P((X,Y) e (B xC))

= P(X € B,Y€e().
On the other hand, by Lemma 4,
/B P.(Y € C)dPx(z) = P(X € B,Y € C),
whence the LHS is the same as the RHS, as claimed. (]
Thus, we proved,

Theorem 7 In the light of Convention 2, when X is absolutely continuous the
conditional density function fyx ezists if and only if the joint density function
fxy exists. In both cases, they can be connected by the equation

frix(ylz) = fo;(T)ﬂ

when fx(z) is not zero. The conditional density can be defined to be equal to zero
when fx(z) = 0.

To summarize, we defined the conditional density of Y given X by the means
of Convention 2, which lead us to the formula introduced earlier as a defining
property of conditional density. In this case we derived the formula (2) from our
“intuitive” Convention and showed the equivalence of the existence of joint density
and conditional density.

4.3.4 Limit approach

In the previous sections we tried to relate abstract P,-probabilities to ordinary
conditional probabilities. This was partially done using the two Conventions.

In nice cases, which will be specified later, it is possible to provide even more
intuitive connection between conditional densities and ordinary conditional prob-
abilities via the concept of a limit. An attempt to do that will be made in this
section.
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We start with the simplest relation,

P,(A) = P(A|X =) = lim P(Ala < X <b) (8)
a—zr~
b=zt

which simply says that P(A|X = z) is essentially the probability of A given that
X is about z, i.e..

P(A|X =z) = P(A|X =~ z).

Although this approach is very simple, there do not seem to be any general
results which either (i) state conditions on A and X which guarantee (8), or (ii)
ensure that there exists an rcp for which (8) is true. So whenever this approach is
used, great care should be taken to prevent possible errors.

If the family {P;} is partially determined by a given conditional density fyx
via the equation

P.Y €C) = [ frix(yla)dy,

we may try to relate P.’s and conditional probabilities using the theorem:

Theorem 8 If f is integrable on some interval [a,b] containing ¢ and continuous
at xo, then
: | $
f(wo) = lim w— [ f(t)at
a—zy b—ala
b—)zg

This is a basic result of Real Analysis, which we are not going to prove here.
Instead, we can apply the theorem to our density functions, which, in cases that
we shall call nice cases, will have properties stated in the Theorem 8.

So let fx be a density function of a random variable X satisfying the conditions
of the theorem, i.e. continuous at zo. We then have

< <
3 leey=Tini P(a b_ X <b)
a3z —a
b—n:,',*

since Pla < X <b) = fab fx(z)dz. This is the required relationship between fx
and genuine probabilities.
Further, if Y is another random variable, C' € B(R), then

b
Pa<X<bYeO) = [ [ fry(ay)dydz
for jointly absolutely continuous X and Y. Hence,
Pla< X <bY €)
Pla< X <))
fa Jo fxy (z,y)dydz
Iz fx(e)dz

P(Y €Cla< X <b)
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Now, if fx(z) and g(z) = o fx,y(z,y)dy are both continuous at z, as functions
of z only and fx(zo) # 0, then, dividing numerator and denominator by (b — a)
and applying Theorem 8 we get

P, (YeC) = /ny|x(y|$o)dy

fxy(zo, y)d
¢ fx(zo)
Jo fxy(zo,y)dy
fx(2o)
9(o)
fx (o) b
. [z Jo fxy(z,y)dydz
= al-l::- ( fab e (2)ds ) (by Theorem 8)

b—n:g‘
a—=z,
b—rz:

Again, this is the required connection between the “mysterious” P, (Y € C) and
probabilities defined in the traditional sense.

4.3.5 Problems with the limit approach

We can now ask ourselves why don’t we use the formula

P(A|X =z)= lim P(Ala< X <b)
boat
to define the conditional probability given X, if X is continuous?

The answer is that the above formula is applicable as long as X is a very
“nice” random variable, with a very “nice” density function. If X or it’s density
have some nasty properties, then the formula would not be true. In fact, even
Theorem 8, which we used to derive the result, will not be true anymore.

As an example, suppose that X is a random variable with the range Ry = [0,1]
and density fx defined by the equation

o = 1  if z is irrational,
X' =1 0  if z is rational.

Thus, fx(z) is just 1 — &(z) restricted to [0,1], where §(z) is the well-known
Dirichlet function.

This density function is not even integrable in the Riemann sense. One could
argue, though, that since rational numbers form a set of Borel measure 0, the
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Lebesgue integral of fx(z) is finite. However, even Lebesgue integration does not
help here, because if z is a rational number between 0 and 1, then fx(z) = 0, but

ﬁ/abfx(t)dt =1

for all 0 < a < b <1, so the limit is also 1! This clearly contradicts the statement
of Theorem 8, which is not surprising, since the conditions of the theorem are not
satisfied.

r T T 1
0.0 o5 1.0 1.6 20

Figure 2: Density function of x? on one degree of freedom.

Another example is much more familiar x? density function on one degree of
freedom. The density is shown on Fig. 2. Since fx tends to infinity at 0, it is
not clear how to use the limit formula to handle the rcp Py. At all other points,
however, the limit definition would work.

Thus, the Limit Approach to conditional densities and probabilities works in
many cases when both densities and random variables are continuous and “well-
behaved”, so to speak. In these cases the limit formulae show clearly the relation-
ship between abstract rcps and real-world probabilities. The approach, however,
is limited to these cases and seems not general enough to provide a definition in
the more difficult cases. It is not even clear whether

P:(A) = lim P(Ala < X <))
baat

satisfies the axioms of regular conditional probabilities, even if the limit did exist.
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4.4 Application to Derivation of the ¢-density

In this section we shall demonstrate how conditional probabilities can serve as a
powerful computational tool. We shall derive the density function of Student’s ¢
random variable defined by

X

VY/k

where X is a standard normal random variable and Y is a x? random variable on
k degrees of freedom, independent of X.

4.4.1 Standard method

Traditionally, the density function of ¢ is derived using the transformation tech-
nique, as shown below.

The joint density function of X and Y is just a product of marginal densities,
since X and Y are independent. So,

k/2—le(—%v)e(-%=2)’ y > 0.

1
fX,Y(x’ y) = \/2_1rF(k/2)2’°/2y

Now we define a transformation
T=X/\/Y/k 3 X=Tx,/V/k ’
V=Y Y=V

the Jacobian of which is

Oz /0t Oz /0v
Ody/ot 0Oy/ov

v

k
So, the joint density of 7" and V is

J = det[

frv(t,v) = \/2\/2_7&‘(11/2)21:/2 v/ 1e(=30 =3 4 5 0

and hence,

fT(t) = ~/—°:ofT'V(t,v)dv

= 2k7rF(ll::/2)2"/2 /Ooo v3 143 (- 3(+2/R)) g, (9)
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This integral can be evaluated by recognizing the Gamma distribution under the
integral sign. After multiplying and dividing by required coefficients, we get the
final formula for the ¢-density function:

_I(k+1)/2] 1 1
fr(t) = T[k/2]  Vkr (1 + t2/k) &2

4.4.2 Using conditional densities

Using conditional densities we can get to the integral (9) in about one line, as
follows.

As above, let X be a standard normal random variable and Y is a x? random
variable on k degrees of freedom, independent of X. Then we can define, for a

fooed Y =y,
=X . N(o,;).
y/k y/k

By the theorem, apparently due to Kupka, the Normal density of 7}, is the condi-
tional density fryy, so we immediately have

) = [ fT|y(tIy)fy(y)dy
— #t? 1 k/2-1_-%
=/ \/_21r TRy ¢ W
which is, after reérra,ngement, precisely the same as the integral (9). O

Apparently, this is the fastest route to the integral, taking which we get the
final formula for the ¢-density function.

4.5 Example

The rcps are conditional probabilities, which means that except for the discrete
case it is not possible to make statistical tests to estimate these probabilities. This
idea is illustrated in this section.

Here we return to the Example 3.4. If we wish to estimate in an experiment
the conditional probability P(Y = :|X = z) for a fixed z and i, we must run the
experiment until the value of X is £ — an event of probability zero since X is
continuous. So rcps are the probabilities which do exist but are hard to “touch”.
This is in analogy with electrons — we all know they exist but nobody has ever seen
or touched one. It is possible, however, to conduct an experiment which involves
theoretical assumed properties of electrons and check observable consequences of
the model. If they agree with theoretical results derived using assumptions about
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electrons (which cannot be verified directly) we may think that our assumptions
are valid.

Similarly with rcps — if we can not check directly our assumptions we can often
use our assumptions to derive results that can be checked in a real-life experiment,
as we shall show later.

4.5.1 Unconditional distribution of Y

Now, we shall use rcps to answer another previously discussed question: what is
the unconditional distribution of Y? Let A = {Y = i} be an event for a fixed
value i = 0,...,n. To find P(A) we start with our assumption about P,(A):

P.Y =i) = P(Y =ilX =) = (") #(1 — 2=

i
By property (3) of the definition we then have
P(Y =t) = Ep [Pe(Y =1)]
N /P,(Y = i) fx(z)dz

- /0l (?);:;‘(1 —2)" x 1 dz

1
n+1

as was shown before — by recognizing a Beta distribution under the integral sign.
Hence, Y is uniform on 0,1,...,n.

4.5.2 Simulation

Since the result was derived using the rcps, it should be tested in a real-life ex-
periment. Fortunately, this experiment is easy to conduct: a simple program in
C was written to simulate 10,000 uniform variables over the interval [0,1] and for
each simulate one binomial variable with n = 49. The program is shown below:

/*
* Program to simulate MAX_X pairs of random variables:
* X - uniform(0,1)
B Y - binomial(49,x)

* where x is a sample value of X.
*

* (C) 1995 Konstantin Gredeskoul, Monash University.

*/

#include <stdio.h>
#include <stdlib.h>
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#define MAX_X 10000
#define MAX_Y 49

int binomial(float p, int n);

void main()

{
- FILE *output;
int i, y;
float x;
output = fopen("simulate.out", "w"); /* Open file for writing */
for (i=1; i<=MAX_X; ++i) {

R x = (float)(rand()+1)/RAND_MAX; /* Get uniform x */
y = binomial(x, MAX_Y); /* Get binomial Y given p=x */
fprintf(output,"’%10.8£\t%d\n",x,y); /* Write results to a file */

}
}
int binomial(float p, int n) /* The function returns bin-
omial r.v. with parameters
n and p. */
{
int i, y=0;
float z;
if (p<o || p>1)
return(-1);
else
for (i=1;i<=n;++i) { /* Make 50 runs of: */
z = (float)(rand()+1)/RAND_MAX; /* Get z - uniform (0,1) */
g if (z<=p) ++y; /* If z < p, increment y */
}
return(y); /* Return y */
}

. Then the S-Plus package was used to analyze and graph the data; the simulated
Y-values are shown on Fig. 3 — they form an acceptable uniform distribution.

4.5.3 x? test of goodness-of-fit

. To make sure that they form an acceptable uniform distribution, another program
on C was written to test 10,000 simulated y-values for goodness-of-fit using the
x? test. It was not possible to load and test 10,000 y-values into Minitab due to
lack of memory. The program, however, worked quickly by reading each y-value,
incrementing the counter and disposing any y-value, no longer needed.
The program is shown below:
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Figure 3: Histogram of 10,000 empirical Y values.

/*

* Program to read n values from a file and conduct a
* goodness-of-fit Chi-square test on the data.

*

* (C) Copyright 1995, Konstantin Gredeskoul
*/

#include<stdio.h>
#include<math.h>

#define N 50

void main(int argc, char *argv([])

{
int i, ¢=0, count[N]={0};
float chisq=0, expected;
FILE *inp;

if (arge == 2) {
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printf("Opening file %s for reading...\n", argv[i]);
inp = fopen(argv[i], "r");
if (inp!=NULL)
printf("Reading data...\n");
while (fscanf(inp, "%d\n", &i)==1){
++count [i] ;
++c;
}
fclose(inp);

printf("Closing file...\nCalculating Chi-square statistic...\n");

expected=(float)c/N;
for (i=0; i<=N-1; ++i)
chisq+=pow(count[i]-expected,2)/expected;

printf("Chi-square = %5.3f, on %d d.f.\nStop.", chisq, N-1);

30

And here is the output of the above program:

Opening file chisq.txt for reading...
Reading data...

Closing file...

Calculating Chi-square statistic...
Chi-square = 43.400, on 49 d.f.

Stop.

The probability corresponding to the value 43.400 was found using MINITAB.

The extract of the (edited) MINITAB session is shown below:
MTB > CDF C1i;
SUBC> Chisquare 49.

X P( X <= x)
43.4000 0.3013

MTB > let ki1 = 0.3013
MTB > let k2 = 1 - ki1
MTB > print k2

K2 0.698700

Since P(x3g > 43.400) = 0.6987 is certainly not significant, we accept the null

hypothesis that the distribution of Y is uniform over {0,...,49}.
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4.5.4 Distribution of Y given X € [a,}]

Although it is impossible to simulate the Y values given a particular value of X,
it is quite possible to obtain an empirical Y-distribution given that X lies in some
interval [a, b] since the probability that X € [a,b] is not zero for all0 < a < b < 1.
We shall consider, for example, the interval: [0.8,0.9].

Theoretically, assuming the rcp model we have the following probabilities,

=1 < <p
P(Y =ila< X <b) = P¥=ia<X <}

P(a< X <))
_ P(Y=4,a<X <))
- b—a
1 1 ]
= [ P(Y =ia < X <b)fx(a)de
b—alo
b
= ;= [ P(Y =i)fx(a)dz by property (2
b . »
- bia/a (1:):1:'(1 —z)"dz
For each value of : = 0,1,...,n these integrals have to be evaluated numerically.

This was accomplished using the algebraic package Maple-V and integrating
inside of a loop, as shown below:

> with(combinat, numbcomb);
> for i from 30 to 49 do
evalf (10*int (numbcomb (49,i)*x"i*(1-x)"(49-i),x=0.8..0.9),20)
od;
>

The results of Maple’s calculations are given in the Table 1 and graphed on
Fig. 4. The theoretical probabilities are shown as connected circles, while simulated
values are shown as bars. Since simulated data fit theoretical values, we conclude
that the assumptions of the rcp model were correct.

4.5.5 What if X is discrete?

Recall, that we showed that the unconditional distribution of Y is discrete uniform
when X is a continuous uniform random variable.

What happens if X is uniform but discrete? Would the distribution of Y still
be uniform? To answer this question, we can use rcps to calculate the exact
probabilities for each value of Y and check whether they are all the same. So let X
be a discrete uniform random variable, with essential range Rx = {0, #, %, ooy 1}
for some integer m. What is the unconditional probability that Y = i for some

fixed:=0,...,n?
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Y | Probability || Y | Probability
. 30 | .0005620518 || 40 | .1063443302
31 | .0003956246 || 41 | .1269602333
32 | .0012600785 || 42 | .1374890209
33 | .0028890942 || 43 | .1333657228
34 | .0061563624 || 44 | .1136191576
. 35 | .0121294347 || 45 | .0825404783
36 | .0220604103 || 46 | .0489275089
37 | .0370104687 || 47 | .0220886682
38 | .0572224960 || 48 | .0067186362
39 | .0814171961 || 49 | .0010279005

Table 1: Y-values and exact theoretical probabilities.

Since, as earlier, we have

P(Y =i) = (’;) z'(1 — z)"
we can write
s P(Y =1) = Ep,[P(Y =1)]
= S P(Y =ilX = j/m) x px (2)

7=0

- ORI -2 m

7=0
B 1 m In [i]t[l i n—i
T o om+1 = \i/ lm m

For each i the above sum has to be evaluated numerically. A program in C was
written to calculate the above probabilities for m = 10 and n = 20. The program
and the output are shown below:

/*

* Calculation of probabilities P(Y=i) when Y is a (conditional) binomial
* random variable with probability of success p=x, where

* X is another discrete random variable with range {j/m} for j=0,...,m.

* (C) Copyright 1995, Konstantin Gredeskoul
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Figure 4: Sample Y-histogram and theoretical values for z € [0.8,0.9].

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#define N 20

double factorial(int);
double choose(int, int);

void main()
{
int i, y;
double x;
float sum, total=0;

x=factorial(20);

for (y=0; y<=N; ++y){
sum=0;

for (x=0.0; x<=1.0; x+=0.1)
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sum += choose(N,y) * pow(x,y) * pow(i-x,N-y);

sum/=11;
printf("Y = %2d Probability = %f\n", (int)y, sum);
total+=sum;
}
printf (" \n");
printf (" Total prob. = %f\n", total);
}
double factorial(int n) /* Factorial function */
{
int i;
double tmp=1;
for (i=1;i<=n;++i) tmp*=i;
return(tmp);
}
double choose(int n, int m) /* n choose m function */
{
double tmp;
if (m==0 || m==n || n==1)
return(1);
if (m==1 || m==n-1)
return(n);
if (m>n)
return(-1);
tmp=factorial(n)/(factorial(n-m)*factorial(m));
return(tmp);
}

And the output:

Y= 0 Probability = 0.103086
Y= 1 Probability = 0.030469
Y= 2 Probability = 0.041201
Y= 3 Probability = 0.043688
Y= 4 Probability = 0.043480
Y= 5 Probability = 0.043283
Y= 6 Probability = 0.043278
Y= 7 Probability = 0.043290
Y= 8 Probability = 0.043291
Y= 09 Probability = 0.043290
Y =10 Probability = 0.043290
Y=11 Probability = 0.043290
Y = 12 Probability = 0.043291
Y =13 Probability = 0.043290
Y= 14 Probability = 0.043278
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Y =15 Probability = 0.043283
Y = 16 Probability = 0.043480
Y =17 Probability = 0.043688
Y =18 Probability = 0.041201
Y =19 Probability = 0.030469
Y =20 Probability = 0.103086

Total prob. = 1.000000

It can be seen that probabilities are unequal. Hence we can conclude that the
unconditional distribution of Y is not uniform in this case.

In fact, the probabilities form a rather interesting distribution shown in Fig. 5.
The two peaks at 0 and 20 can be explained by the fact that if X = 0 with
probability %1 = 0.09 then Y = 0 with probability 1. Similarly, if X = 1 with
probability 0.09, then Y = 20 with probability 1. For all other values of X, the
values of Y  may vary, hence the pattern on the histogram.

If X was distributed over {1, 2, ... 2=1} then the unconditional distribution
of Y would not have the two peaks at 0 and 20, but it would still not quite be
uniform, as shown on the Fig. 6.
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01 2 3 4568 7 8 91011121314161817181920

Figure 5: Exact probability distribution of Y when X is discrete.

0O 1 2 3 466 7 8 9 1011121314161817 181920

Figure 6: Exact probability distribution of Y when X is discrete, but not 0 or 1.
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